		Registration N	o	040									
Tota	210 I nur	mber of pages	s - 03	210		210			210		210		.TECH E3I103
		3 rd S		ECH/	ANICA	AL OF	PERA	TION	S)17 - ′	18		
	210	210	BRA	BRANCH : Chemical Engineering Time : 3 Hours Max Marks : 100						210		210	
Q Code :B791 Answer Part-A which is compulsory and any four from Part-B. The figures in the right-hand margin indicate marks. Assume suitable notations and any missing data wherever necessary. Answer all parts of a question at a place.													
	210	210		-		-		-			210		210
Q1.		Answer the f			-	<u>er all t</u>	he qu	<u>estion</u>	<u>is)</u>			C	2 x 10)
	(a)	Which of the	_	•		sive ma	aterial?	•				\-	- 1 ,
		ii. Del	nydrated p	eas									
	210		sand of the abov	/e ²¹⁰		210			210		210		210
	(b) The value of work index (kWh/tonne) for h					for ha	rd mate	erial is					
		i. 7 –	9	•	·								
		ii. 9 –											
			– 20 stor than 3	20									
	(c)	iv. gre Bond's law is	ater than 2		ad siza								
	210		ater than 5		JU SIZU	. 3. 210			210		210		210
			s than 50 r		3								
			ater than 5			d less t	han 50) mm					
			ater than 5										
	(d)												
		i. We	mco Reme	er jig									
			king table										
	210		al concent			210			210		210		210
			e classifier					_					
	(e)	Spiral concen			for the	conce	ntratio	n of:					
		•	h grade or										
			grade ore										
		•	grades of c										
	iv. none of the above (f) . For handling toxic and flammable liquid (filtrate), the recommended filter is:												
	(1) 10	i. leaf filter										210	
			c filter										
		4100											

drum filter

iii.

		iv. iiilei piess						
	(g) ₀		210					
		from:						
		i. 5 to 10 microns ii. 10 to 50 microns						
		ii. 10 to 50 microns iii. 50 to 100 microns						
		iv. 100 to 200 microns						
	(h)	Which of the following conveyors can be used for the transportation of boiler						
	(11)	ash?						
	210	i. Belt conveyor	210					
		ii. Screw conveyor						
		iii. Bucket elevator						
		iv. Apron conveyor						
	(i)	The speed of propellers in mixing vessels for liquids vary from:						
	()	i. 100–1000 rpm						
		ii. 200–1200 rpm						
	210	iii. 400–1750 rpm ²¹⁰ ²¹⁰ ²¹⁰ ²¹⁰ ²¹⁰	210					
		iv. 500–2250 rpm						
	(j)	Size-enlargement operation is practiced to produce a product of:						
		i. definite shape and size						
		ii. increased bulk density						
		iii. enhanced appearance						
		iv. all of the above						
Q2	210	Answer the following questions:	x 10)					
Q _	(a)	Is sphericity independent of particle size? Justify your answer with proper	, , , , , , , , , , , , ,					
	()	explanation.						
	(b)	How do the solid particles break into smaller fragments? Give your answer						
	` ,	from energy point of view.						
	(c)	Distinguish between autogenous and semi-autogenous grinding mills.						
	(d)	What is the importance of stratification in screening?						
	(e)°	Differentiate between a forward and a reverse hydrocyclone.	210					
	(f)	What is the role of electrolyte in sedimentation?						
	(g)	What are the factors affecting the collection efficiency of electrostatic						
		precipitators? Name a few materials for which pipe transport is used.						
	(h)							
	(i)	What is the mechanism of mixing in V-blenders?						
	(j)	Name the forces responsible for coagulation.						
	210	Part – B (Answer any four questions)	210					
Q3	(a)	Discuss various average particle sizes used to represent the particle size of a	(5)					
	(- /	mixture.	(-)					
	(b)	Calculate the range of the values for internal friction for which a material is	(5)					
	` ,	flowable.	` '					
	(c)	Briefly explain the problems associated with the flow of bulk-solids.	(5)					
Q4	(a)	Differentiate between single- and double-toggle jaw crushers.	(5) ²¹⁰					

	(D) 210	A set of crushing rolls to crush a material of specific gravity of 2.8 from a maximum feed size of 7 cm to a product size of 1 cm. The rolls with a width of 60 cm run at 100 rpm and have a clearance of 1.2 cm between them. If the angle of nip is 32°, find the diameter of the rolls and the actual capacity, if the actual capacity is 10 % of the theoretical one.	(10) 21
Q5	(a) (b)	Discuss in detail the theory of vibrational separation with appropriate figures. Discuss the construction and operation of the following equipments with their neat figures. i. Triboelectrostatic separator ii. Rake classifier	(7) (4) (4)
Q6	(a)	Discuss the construction and operation of a shaking table with a neat diagram giving emphasis on stratification of materialsbetween riffles.	(6)
	(b)	Discuss the role of various floatation reagents used to modify the surface	(5)
	(c)	properties of the solid particles. Derive the equation for settling ratio in the Stokes' law region.	(4)
Q7	(a)	For continuous filtration derive the equation for amount of dry cake produced per minute (W_{C}).	(10)
	(b)	Discuss the construction and operation of a rotary drum filter with a neat diagram.	(5)
	210	210 210 210 210 210 210	21
Q8	(a) (b)	Discuss the construction and working of a venturi scrubber. Discuss the construction, working, advantages, and disadvantages of a screw conveyor.	(5) (6)
	(c)	Discuss the construction and working of a bucket elevator with a neat diagram.	(4)
Q9	(a) 210	A solution with a density of 1600 kg/m³ and a viscosity of 35 mNs/m² is to be agitated by a propeller mixer of 0.5 m diameter in a baffled tank of 2.5 m diameter where the liquid depth is 2.5 m. The propeller is situated 0.6 m above the bottom of the tank. For a rotational speed of 2 revolutions per second, what will be the power consumption by the motor to drive the propeller? Note: Power number remains almost constant at a value of 6.0 for Reynolds number above 10,000.	(5)
	(c)	Briefly discuss the two major steps of crystallization process. Discuss the objectives and applications of sizeenlargement operations.	(5) (5) ₂₁