Registration No:																	
Total Number of Pages: 02 B.Tech																	
3rd Semester Back Examination 2017-18 Introduction to Physical Metallurgy BRANCH: METTA, MME Time: 3 Hours Max Marks: 70 Q.CODE: B1188 Answer Question No.1 which is compulsory and any five from the rest.																	
Q1		Answer the following questions:										(2 x 10)					
	a)	Define coordination number and atomic packing factor.															
	b)	Show schematically the (1 1 2), (0- 1 0) planes and [-2 1 -1], [-1 -1 -1] directions in cubic crystals.															
210	c)	Distinguish between crystalline and non-crystalline solids.											210				
	d)	Define solid solution, Gibb's phase rule, phase diagram and lever rule.															
	e) What is peritectic reaction?																
	f)	Why are grain boundaries favorable sites for nucleation and growth of precipitates?															
	g) Draw and show the difference in the micro structures formed after anneand normalizing.									nealing							
210	, Dian a moute choice of a cooming carrol to pand motion								210			210					
	i)																
	j)	Draw phase of	alagra	am or	pure	iron (irom i	room	tempe	eratui	e onv	varus).				
Q2	a)	State Hume-Rothery rule rules that favors substitutional solid solution.										(5)					
210	b)	Calculate the equilibrium number of vacancies per cubic meter of copper at $1000^{\circ}\text{C}_{\odot}$. The energy for vacancy formation is 0.9 eV/atom. The atomic weight and density at 1000°C for Cu is 63.5 g/mol and 8.4 g/cc respectively. Boltzmann constant k = 8.62×10^{-5} .										(5)	210				
Q3	a)	Differentiate between the following: i) Hot working and Cold working. ii) Recovery and Recrystallization.								((5)						
210	b)	Discussathe n		,			rdenir	ng of A	Al allo	ys.	210			210	((5)	210
Q4	a) b)	What is tempering? What are the microstructural changes after tempering? How do we correlate microstructure with mechanical properties of materials? How these two are related? Explain in brief by taking an example.										(5) (5)					
Q5 ₀	a) b)	What is the ediagram for a What are the	eute	ctoid	steel.									a ₂Ţ₫Ŧ		(5) (5)	210

210	210 Q 7	and whomat is what is a) Explain shear she	Define hardenability. What is the common criterion of hardenability of steels and why? Enumerate the five factors affecting the hardenability of the steel. What is the composition, properties and applications of phosphor bronze? 210 210 210 210 210 Explain the difference between resolved shear stress and critical resolved shear stress. Derive the expression for critical resolved shear stress. Discuss the Martensite characteristics and morphology of Martensite. Write short answer on any TWO:						
210	I	b) Physica c) Stainle	rule and its impo al metallurgy of c ss steels on-less transform	opper alloys.	210	210	210	210	
210	210		210	210	210	210	210	210	
210	210		210	210	210	210	210	210	
210	210		210	210	210	210	210	210	
210	210		210	210	210	210	210	210	
210	210		210	210	210	210	210	210	