Tota	al Nu	Imber of Pages:02	B.T							
010			PME3I							
210		²¹⁰ 3 ^{sd} Semester Regular / Back Examination 2017-18								
		Introduction To Physical Metallurgy & Engineering Materials								
		BRANCH: MECH								
		Time: 3 Hours Max Marks: 100								
		Q.CODE: B1123								
	1 no		root							
210	Alla	wer Question No.1 and 2 which are compulsory and any four from the ²¹⁰ The figures in the right hand margin indicate marks.	; 1651.							
		The figures in the fight hand margin indicate marks.								
Q1		Answer the following questions: <i>multiple type or dash fill up type</i>	(2 x ′							
	a)	, , , , , , , , , , , , , , , , , , , ,								
		carbon in FCC form of iron is higher than in its BBC form?								
	b)	What is the effect of temperature on concentration of vacancy?								
	c) d)	What are the major differences between an edge & screw dislocation? Apply phase rule to the two phase field of a binary isomorphous diagram.								
210	uj	What conclusion can be drawn? 210								
	e)	It is often thought that that species having lower activation energy diffuses								
	,	faster than the one having higher activation energy. Is this always true?								
	f)	Why the eutectic structure does not exhibit coring?								
	g)	What is constitutional super-cooling? When does this take place?								
	h) i)	What is a Composite? Difference between Metals and Ceramics?								
	j)	Rank the following samples in order of increasing self diffusion coefficients (a)								
210	J/	Aluminium single crystal, (b) Polycrystalline aluminium whose average grain								
		size is 5micron (c) Polycrystalline Aluminium whose average grain size is								
		10micron.								
Q2		Answer the following questions: Short answer type	(2 x ⁻							
	a)	Compare between deformation mechanisms of slip and twinning	•							
	b)	A metal under goes an allotropic transformation at room temperature at high								
210		pressure and at lower temperature at atmospheric pressure. Is the volume								
		change associated with this transformation positive or negative?								
	c) d)	Show the packing efficiency of BCC is 68% Define crystal, lattice and motif								
	e)	Why is grain boundary irregular?								
	f)	If the lattice parameter of alpha iron 286 pm what is the atomic radius?								
	g)	Draw the phase diagram of pure Fe (from room temp ownwards)								
	h)	What is the effect of plastic deformation on lattice parameter?								
210	i)	When does a polycrystalline material have same yield strength along all								
	j)	possible direction? For an ASTM grain size of 4, approximately how man grains would be there								
	3/	per square inch in a micrograph taken at a magnification of 100X?								
02	a)	Evaluin evitical reaching about stress and devive Cabraid's low	(40							
Q3	a)	Explain critical resolved shear stress and derive Schmid's law If aluminium deforms at an axial tension of 6.9 MPa in direction [010] on (111)	(10							
		[110] slip system. What is its critical resolved shear stress?								
210	b)	Calculate the equilibrium number of vacancies per cubic meter of copper at	(5)							
£10	,	1000°C. The energy for vacancy formation is 0.9 eV/atom. The atomic weight	1.2							
		and density at 1000°C for Cu is 63.5 g/mol and 8.40 g/cc respectively.								
		Boltzmann constant k = 8.62×10^{-5}								

Q4 210	a)	Derive an expression for critical nucleus size as a function of temperature and show with the help of a schematic graph its variation with temperature. Assuming that a stable nucleus should have at least 100 atoms which correspond to around 1nm radius mark the region of homogeneous nucleation. 210 210 210 210 210 210 210 210 210 210										210
	b)											
Q5 210	a)	Draw the phase diagram for a binary alloy system having following features. Melting point of the two metals (A & B) are widely different. These are partially soluble in each other. There is one three phase reaction isotherm at a ²¹⁰ temperature higher than the melting point of B but lower than that of A. Write down the equation representing the 3 phase reaction. What is it commonly known as?										210
210	b)											
Q6	a)	Explain the Precipitation harden		echan	ism fc	or Al-4	%Cu a	alloy. A	lso		(10)	
	b)	mention crystallographic aspects. Nickel, Aluminium & Copper have face cantered cubic structure yet Ni is soluble in copper whereas AI has only a limited solubility. Explain why it is so?										
Q7	a)	Explain Fick's first and second la	aws o	f diffus	sion. E	Derive	the ne	ecessa	ry		(10)	210
	b)	expressions 200 What is the burgers vector of a define the burgers vector?	disloc	ation?	How	is the	burge	rs circu			(5)	
Q8	a)											
	b)	and limitations. Define critical cooling rate and actual cooling rate. State the Hume-Rothery rules that favorable for substitutional solid solution									(5)	
Q9 ²¹⁰		Two metals, X [Melting point = 1300 $^{\circ}$ C] and Y [Melting point = 1000 $^{\circ}$ C], are partially miscible. They form two solid solutions α and β . Under equilibrium conditions, maximum conditions, maximum solubility values are given in the following table										210
		Temperature (⁰ C)	0	200	400	600	800	900	950			
210		Max. solubility of Y in X [wt.%]	3	10 ₂₁₀	20	32	50 210	40	35 ₂₁)		210
		Max. solubility of X in Y [wt.%]	2	2	3	5	10	5	3			
210		 A eutectic reaction occurs when both α and β phases. a) Based on the given infor phase diagram and label b) An alloy containing 60 w cooling conditions to roo 	matio I each t % of	n, con i phase f X is s	struct e. lowly	an ap coole	propri d ynde	ate equi	uilibrium librium	1		210
		the melting point of X. Di take place and calculate	iscuss	the p	hase t	transf	ormati	on whi				

c) Outline the heat treatment you would recommend for the above alloy to obtain a very fine dispersion of β phase.