	210	210	210	210	210	210		
Re	gistration No	:						
То	tal Number of	f Pages: 02					3.Tech. 3D001	
	210	3 rd Seme	210 GE BRANCH Time Max M	Back Examina NETICS (S): BIOTECH : 3 Hours Marks: 100 DE: B1229	tion 2017-18 210	210		
	Answer Qu		and 2 which a	re compulsory hand margin in			st.	
	210	210	210	210	210	210		
Q1		xperimental r <i>ativum</i>	questions: <i>mult</i> material was	i ple type or das l b) Lathyrus o d) Mirabilis ja	daratus		(2x10)	
			gametes produce	ed by a homozyg		S.		
	a) 1	b) 2	c) 3	d) m				
	210a) Garden (c) Garden (pea was true pea was hete	breeding rozygous	ndelian experime b) Garden pea w d) Garden pea w	as cross breed	ing ₂₁₀ able		
	e) The syndro	ver occurs du me in which	iring individual somati	stage of mitosis. c cell contains th	ree sex chromo	some XXX is		
	called a) Down's s	 svndrome		b) Super female				
	c) Turner's	syndrome		d) Klinefelter's s	yndrome			
	f) A gene sho							
			ant to the other pendently expres	ssed in the hetero	zvaote	210		
	c) Has allel	les tightly link	ked on the same	chromosome				
				e in developmen		icontrio		
	inversion a		crossing over be	etween chromoso	mes naving per	icentric		
			and duplication	b) Bridge f	ormation			
			chromosomes					
			re affected by ma descriptor for suc	any different gene	etic influences a	s well as		
	a) Mendelia			Polygenic				
	c) Highly he	eritable	d) N	lone of these				
				ach arbitrary phe	notypic class fo	or a		
		ites are gene	d a(rally too low to h	ave a significant	effect on allele	frequencies.		
Q2	²¹⁰ Answer the	e following	questions: Shor	t answer type	210	210	(2x10)	
	a) What is the	e meaning of	the term allele?				,	
	b) What is tes							
	c) Why Mende			or studying linked	denes?			
	e) What is hyt				genes			
	f) What do yo	ou mean by a	Ilelic complemen	tation?				
	g) Define QTL		•• 210 e	- 210	· ·· 210	210		
	 h) What are th i) What do yo j) List few example. 	ou mean by g	enetic drift?	e frequency in po	pulatión?	210		

210		210		210	210	210	210	210		210
	Q3				of inheritance? E ce with example.	xplain with exam	ple.		(10) (5)	
210	Q4				ith example differ for cytoplasmic ir			atios.	(10) (5)	210
	Q5		structural an We know tha recessive ge and a son w	d number basis at the most comr ene. A couple wit	tion? Explain wit changes in chron non form of color h normal color vi What is the prot	nosome. blindness result sion has a daugl	s from an X-linke hter with normal	ed vision	(10) (5)	
210	Q6		assumptions Imagine that as two differ	are made to val a population is i ent alleles, and 4	w of genetic equi lidate the law? in Hardy-Weinbe 49% of the popula is homozygous i	rg equilibrium. A ation is homozyg	certain gene pre ous dominant. V	esents	(10) (5)	210
010	Q7	b)		between the bot	c elements? Give ttleneck effect an	d the founder eff	ect.		(10) (5)	210
210	Q8	 210 210 210 210 210 210 210 210 210 8 a) What is linkage and its features? Explain with examples the types and significance linkage. b) What is recombination frequency? Why does the recombination frequency of genes vary depending on the distance between them in the chromosome? 								
210	Q9				e with suitable ex ybrid cross and o		210	210	(10) (5)	210
210		210		210	210	210	210	210		210
210		210		210	210	210	210	210		210
210		210		210	210	210	210	210		210

210 210 210 210 210 210 210