)	210	210	210	210	210		210
Reg	jistrati	on No:						
Tota	al Num	nber of Pages:	02				B.Tech	
		-					PCI3I101	
210	C	210	emester Regul Fluid Mechanic	210	210	-18 210		21
		-		ANCH: CIVIL				
				me: 3 Hours				
				x Marks: 100 CODE: B1180				
	Answ		o.1 and 2 which	n are compul	sory and any		e rest.	
210)	210 The fig	gures in the rig	ht hand marg	in indicate m	arks. 210		21(
Q1			wing questions:			type	(2 x 10)	
			of water increases or depth of centre			merced plane		
			ned at angle ' θ ' w			neiseu plane		
			umber for flow of for this flow will		ain pipe is 640	. The Darcy-		
			f for this flow will nit volume of liqu		temperature an	d pressure is		
21(alled ²¹⁰	210	210 ita diamatar ia	210 20 om lf tho d	210		2
	•	•	pipe is 1 km and s 40 cm, then its le					
	•		ter is specified by		appage (ation of	r		
			nuity is based on ed of a turbine is e					
		A gradually expa unner to the tail r	anding tube whic	ch discharges	water passing	through the		
21(litions the dischar	ge in case of a	a double acting	reciprocating		2
	р	oump is given by	/					
Q2			wing questions:				(2 x 10)	
			iscosity of benzei ermine its dynami		Stokes and its	mass density		
	b) V	Vhat are the limit	tations of Bernoul	li's equation.				
21(•		aracteristics of flover er 25 cm dischar		f water per mir	ute. Find the		2
			flowing through th					
			an by <i>equivalent p</i> d U tube manor		sensitive that	n an upright		
		nanometer?	exerted by a jet c	n a curved va	ne movina in th	a direction of		
	tł	he jet.			-			
0.17	•		uction lift of a recip r advantages of K	• • •		ee?		
210			ecessary for centr			es ? 210		2
Q3	a) A	A hydraulic ram 3	300 mm diameter	and 1.5 m lon	a moves within	a concentric	(9)	
	C	ylinder 300.4 mr	m diameter. The a	annular clearan	ice is filled with	oil of relative		
		•	l kinematic viscos on when the ram	•				
	b) A	A glass tube of 8	3 mm internal diar	meter is immer	sed in a liquid	at 20 ⁰ C. The	(6)	
21(of the liquid is 0.15 N/m. Calcu					2
		urvature of the n						

210	210		210	210	210	210	210		210
	Q4	-	A triangular gate of of specific gravity 0 gate. Find the force The vertex of the tri	.80 is stored up e exerted by the	to a height of 4 oil on the gate	.4 m above the ba and its centre of p	se of the	(8)	
210	210		Show that the meta GM = I/V –B Where I = Momen surface, V = Volume the centre of gravity	G ²¹⁰ t of inertia of t e of the body su	he plan of the t	floating body at tl er, BG = Distance		(7)	210
210	Q5 210	-	A venturimeter is p water discharge. Fo diameter of throat there. The throat pressure as 101.3 pipe carries a disch	or 100 KN/m ² g of the venturim is 2.0 ²¹ m high KN/m ² and vap	auge pressure eter if it is to pr er than ²¹ venture or pressure as	in the pipe, deter roduce cavitation e inlet. Take atm	mine the pressure ospheric ⁰	(7)	210
	I	b)	A pipeline carrying cm diameter at se section 1 and 2 are is 200 litres/s, deter	water changes ction 2 which i 120 KN/m ² and	in diameter from s 6 m at highe d 80 KN/m ² , resp	r level. If the pre	ssure at	(8)	
210	Q6 10		The velocity compo U= y ³ + 6x - 3x ² y Check whether the Distinguish among a	V= 3xy ² - 6y flow satisfies co	- x ntinuity and irrot	ationality.	210	(9) (6)	210
210	210	 working under a head of 140 m and speed of 300 rpm. Calculate the guide vane and runner angles and the leading dimensions of the runner. Assume overall efficiency 80%, hydraulic efficiency 88%, speed ratio 0.75, flow ratio 0.15, ratio of outer to inner diameter is 0.6, and percentage flow area blocked by runner vanes thickness is 4. 							210
		a)	A jet of water havi	ng a velocity o	f 36 m/s strikes	a series of radia		(5) (10)	
210	vanes mounted on a wheel which is rotating at 240 r.p.m. The jet makes an angle of 20 ⁰ with the tangent to the wheel at inlet and leaves the wheel with a velocity of 6 m/s at an angle of 130 ⁰ to the tangent to the wheel at outlet. Water is flowing from outward in a radial direction. The outer and inner radii of the wheel are 500 mm and 250 mm respectively. Determine Vane angles at inlet and outlet Work done per second per N of water, and Efficiency of the wheel								210
		b)	Draw and explain th	ne indicator diag		ocating pump.		(5)	
210		a) b)	Write short notes of Fluid classification Stability of immerse Flow net			210	210	(5) (5) (5)	210
210	210		210	210	210	210	210		210

)