Total N	umber of Pages:	02				B.Tec
						EE3I0
	3 rd Se	emester Regula			8	
210	210		MAGNETIC THE H: ELECTRICA		210	
			me: 3 Hours			
			x Marks: 100			
		Q.0	ODE: B1115			
Ans	wer Question No The fig	o.1 and 2 which jures in the rigl	•	• •		rest.
Q110	Answer the follo	-	•			(2 x 10
a)						
,	plane iii) a circle i			. ,		
b)	The curl of the gra	adient of a scalar	field defined by V	$=2x^2y+3y^2z$	$+4z^{2}x$ is	
c)	The flux density a	t a given point in	space is given by	$\mathbf{B} = 4xa_x + 2ky$	$va_{y} + 8a_{z}$	
	Wb/m ² . The value	e of k is				
₂₁₀ d)	The divergence of	f curl of a vector i	S 210	210	210	
e)	If in free space, th	ne electric field is	given by $\mathbf{E} = 20 \mathrm{c}$	$\cos(\omega t - 50x)a_y$	V/m the	
	displacement curr	rent density is	<u>.</u>			
f)	An electric potent at (-2,1,5) and (1,	-	••••••	•		
₂₁₀ g)	The unit of magne	etic charge is	• 210	210	210	
h)	The flux through e	each turn of a 100) turn coil is (t ³ – 2	2t) mWb. where	t is in	
,	seconds. The indu			, ,		
i)	The skin depth of	Copper at 50 Hz	is given σ=5.	.8x10 ⁷ S/m and	μ=μ ₀ .	
j)	Microwaves have	a frequency rang	e of approximate	ly		
Q2	Answer the follo	wing questions:	Short answer ty	<i>г</i> ре ₂₁₀	210	(2 x 10
a)	In what aspects fi	•	erior to circuit theo	ory in understan	ding	
b)	electromagnetics What do you unde		nic and solenoida	l fields?		
c)	Convert points P(
d)	What are the cons	straints in applica	tion of Gauss's La			
e)	State the significa	•				
f)	State Ampere's ci			xwell's equation	ns from it.	
210 g)	What do you unde			210	210	
h) i)	Define attenuation Write two applicat			mealum.		
j)	What is intrinsic in					
Q3 a)	Describe in details	s the various coor	rdinate systems u	sed in Electrom	agnetics.	(10)
b)	Evaluate both side					(5)
	$\mathbf{F} = 3y^2 z a_x + 6x^2$	$^{2}z a_{y} + 9xz^{2} a_{z}.$				
210	210	210	210	210	210	

0.1

	Q4	a)	D · · · ·						
		a)	Derive the express Coulomb's Law and		ld due to a line cha	arge using both		(10)	
		b)	Given that $\mathbf{E} = (3x^2)^2$	$(+y)a_x + xa_y kV$	V/m, find the work of	done in moving	a -2 µC	(5)	
			charge from (0, 5, 0 (0,5,0)→(2,5,0)→(2	D) to (2, -1, 0) b					
	210		210	210	210	210	210		210
	Q5	a)	Explain various asp	•		Derive the expre	ession for	(10)	
		b)	dielectric constant A homogeneous di	and electric s electric (∈ _r =2.5)	• •	while reg	ion 2	(5)	
		,	(x>0) is free spac V/m find E _{1.}			-	•		
	Q6 10	a)	Describe the variou				210	(10)	210
		b)	A current distributio	-	-	-	f	(5)	
			$\mathbf{A} = x^2 y a_x + y^2 x a_x$ defined by z=1, 0≤	5		flux through the	e surrace		
			•	-					
	Q7	a)	Explain Faraday's electromotive force			and motional		(10)	
0	210	b)	A conducting circul			=0 plane in a n	nagnetic	(5)	210
	210		field $\mathbf{B} = 10\cos 377$	$t a_z mWb/m^2$. C	Calculate the induce	ed voltage in th	e loop.		LIU
	Q8	a)	A plane wave prop	agating through	a medium with $\epsilon_r = 8$	3, μ _r =2 has		(10)	
			$\mathbf{E} = 0.5 \exp(-z/3)$						
			i) β ,						
			ii) wave velocity, iii) loss tangent,						
	210		iv) H field	210	210	210	210		210
		b)	v) intrinsic impedar State Maxwell's eq		ential and integral for	orms.		(5)	
0	00		Derive Poynting theorem and find the expression for time average power						
	Q9	a)	crossing a given su				ower	(10)	
		b)	Given that in air, H	$\mathbf{I} = 0.1 \sin\left(\pi \mathbf{x} 1\right)$			erage	(5)	
	210		power density in th	e wavefront.	210	210	210		210

210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210

210 210 210 210 210 210 210