Registration No:]			
Tota	al Nu	umber of Pa	ges: (02											B.Tech.
210	_	210		ELE	CTR(BF	OMA RANC Ti Ma Q.C	GNE H: A me: 3 x Ma CODE	TIC F EIE, 3 Hou arks: E : B1	IELC EIE, urs 100 1114) THE IEE	EOR	ſ		210	PEI3I001 210
	Ans	wer Questic Th	on No le fig						-	-		-		210 210	
210 Q1		Answer the	follov	vina	aneet	tions	mul	tinle 1	tvne (or da	sh fill	un f	vne	210	210 (2 x 10)
	a) b)	A positive ch magnitude C C (4,0,0) is in a) –ve X-dir b) +ve X-dir	arge (C is I n the ection ection	Q C is locate	s loca ed at j	ted at point	t poin B (0,0 c) -ve d) +v	t A (0),-3). e Z dir e Z d	,0,3) a The e rection irectic	and a lectric n on	nega field	tive of inter	charge isity a	at point	(2 × 10)
210		ρ at a point a a) $\nabla \times E = \epsilon_0$ b) $\nabla \times E = \rho$	as: ₀ρ /∈₀		210	c) d)	∇. E ∇. E	$= \epsilon_0 \rho$ $= \rho/\epsilon$) Eo		210		-	210	210
	c)	Voltage appl that of air. Th							uces	an el	ectric	field	10 tir	nes of	
	d)	The sum of t amplitude wi	wo op						oolariz	zed w	aves	of eq	ual		
210		a) A circularl b) A linearly c) An elliptica d) An un-pol	polariz ally po	zed w olarize	/ave. ed wa			210			210			210	210
	e) f)	The direction of e	electric	c field	is				•					in the ance d	
210	g)	between the When a ₂ plan having $\in_r = 4$ a) 8/9	plates ne wav	s of a /e tra en fra	paral vellin	lel pla g in fr	ate ca ree sp wer tr	pacito ace i	or is s inci	dent i into th	 norma	ally o	n a m	nedium	210
	h)	If H = 0.1 sin	ı(10́ ⁸ т	rt + β	• ••	√ m f	or a p		'		agatir	ng in	free	space,	
	i)	then the time When the ph any medium	ase v	elocit	y of a	n ele	ctrom	agnet	ic wa	ve de	pends	s on f	reque	ency in	
210	j)	For sea wat radio signal (a) 0.322m	can be		smitte	ed wit		6 ²¹⁰ atte		on at 2			e for	210 which	210
Q2	a)	Answer the Two small of conducting t ball is restrai	diame [:] hread	ter 5 . Eac	g die h bal	lectric I carr	: ball ies a	s car nega	n slid itive d	e free charge	e of 2	2μC.	If the	e lower	(2 x 10)
210	b) c)		f a ve = 0, n consta	ctor narks ant 4	field the b . The	is zer oound E in	o, wh ary be free	at is etwee	the v n free	ector space	field	calle d a di	ed? electi	ric ²¹⁰ with	210
	d) e) f)	What is disp In a field of = 15V and V What is a P	olacen charge _в = 30	nent o e Q a W res	currer t the pectiv	nt? [origin vely. \	Does , pote What	ential will be	at A(2 e the	2,0,0) poten	and I tial at	B(1/2 : C(1,	,0,0) 0,0)?		
210	•,	210	Syntin	9 10	210		nat R	210		יסו ווונ	210		••	210	210

9	y) What is the capacitance of a solid infinitely conducting solid sphere of radius 'R' in free space?	
I	 Write down the generalized Ampere's law and explain each term in the equation. 	
	Find the polarization cos (wt +30) a_x + 3 sin (wt-45) a_y ? What is difference between polarization and charging of a neutral object? ²¹⁰	
Q3 a	a) Write down the statements of Divergence theorem and Stoke' theorem. Also Prove that the divergence of the Curl of a vector A is ZERO. Find the divergence of $V(x,y,z) = -(x \cos xy+y)i + (\sin z^2+x^2+y^2)k$	(10)
	b) Given $J = 5x a_x + (y - 3)a_y + (2 + z)a_z A/m^2$. Find the charge crossing per unit time out of the surface S of the rectangular box bounded by the planes x=0, x=2, y=0, y=2, z=0, z=2.	(5)
210 Q4 a	a) What is the limitation of Ampere's circuital law? Explain the correction done	(10)
I	by Maxwell to Ampere's law by explaining continuity equation. b) A uniform plane electromagnetic wave propagating in air is given as $E = i_x \cos [\omega t - (\frac{2\pi}{\lambda})y]$. Derive by Maxwell's equation the expression for the vector magnetic field.	(5)
Q5° a	a) Derive the boundary conditions for electric field intensity E, electric flux density D, magnetic field intensity H and magnetic flux density B for an interface, between two perfect dielectric modia	(10)
I	interface between two perfect dielectric media. b) For a current distribution in free space $A = (2x^2y + yz)a_x + (xy^2 - xz^3)a_y - (6xyz - 2x^2y^2)a_zWb/m$. calculate magnetic flux density.	(5)
_	 a) Derive the expression for Energy and Energy density in static electric field. b) Write and explain the Maxwell's equations in integral form and differential form with its physical significance. 	(10) (5)
Q7 a	a) Explain about magnetization vector and derive the expression for relative	(10)
I	permeability. b) If two parallel plates of area 4 m ² are separated by a distance 6mm, find the capacitance between these two plates. If a rubber sheet of 2 mm thick with $\pounds r=2.4$ is introduced in between the plates leaving a gap of 1mm on both	(5)
210	sides, determine the capacitance. 210 210 210	
Q8 a	a) State and explain the Poynting theorem and derive the expression for poynting vector.	(10)
I	 a)Skin depth b)Vector Potential 	(5)
Q9 a	a) Derive the relation between E and H in uniform plane wave propagation. Define intrinsic impedance and give its physical significance.	(10)
I	 Find the input impedance of the distortion-less transmission line at radio frequencies in both open circuited and shorted cases. 	(5)
	210 210 210 210 210	