Registration No:															
Tota	ıl Nu	ımber of Paç	ges: 02											B.Te	ch.
210		BRA Answer Que	ECTRIC NCH : A	AEIE, E lo.1 wh	ND E CE, I Ti Ma Q. nich i	LECTEIE, I me: 3 ax Ma COD s cor	TRONETC, BHOURING BIRTHER BIRT	IICS IEE, irs 70 22 sory	MEA EEE	SUR , ELI	EME ECTR	rom	210	PCEE42	210
210			e figure				nd m	argi	n inc	licate	e mai	rks.	210		210
Q1	a) b) c) d)	Answer the following questions: What do you understand by accuracy and precision of measurement. Why an ammeter should have a low resistance value? Why in D'Arsonval galvanometer, an iron core is usually used between the permanent magnet pole faces? How compensation for static friction is provided in an induction type energy meter? 210 210 210 210 210									(2 x 1	210			
	e) f) g) h)	Why the secondary of a CT is never left open circuited. How the errors in current transformers can be reduced while designing? Explain why a true rms reading voltmeter uses two thermocouples. The deflection of an electron beam on a CRT screen is 10mm.Suppose the pre-accelerating anode voltage is halved and the potential between deflecting plates is doubled. Find the deflection of the electron beam in mm. Why Maxwell Bridge is limited to the measurement of medium – Q coils?										210			
210 Q2	j) a)	What do you Derive the							·				ohasor	(5)	210
210	b)	diagram und calculated. The circuit for iron cored coresistance R with a resista	ernull co or measu oil is as g;arm <i>cd</i> ,	nditions rement follows a lossle	of eff carm ess ca	expla ective ab,the pacite	in hove resist c_2 ;	v loss stance nown arm	ang e and impe da,a	le of self- edanc capa	capad induc ce;arm citor (tance by C_2 in	of an pure series	(5)	210
		and C₄=1 µF Calculate the frequency of diagram unde	e value (100 Hz	of effect. Derive	tive r	esista equati	ince a	and s	elf-in	ducta	ince a	at a s	supply		
Q3 210	a)	Describe the different in o galvanomete	onstructi			_			_			-		(5)	210
	b)	In a dynamo 3cm. Estimat (ii)90° when moving coil 0.866.	meter wa e the tor the der	que if the sity in	ne axi the f	s of th	ne field oil is	d & th 15 r	ne mo	ving m²,th	coils a e cur	are at rent	(i)60° in the	(5)	
Q4 210	a)	Explain the to						omet	er. D	escrik	e the	proc	edure 210	(5)	210
	b)	The followin resistance us Voltage drop	sing a po across across t	tentiom a 0.1 Ω he low	eter. stanc resista	dard re	esistaı under	nce=* test=	1.023 0.422	5V 21V			a low	(5)	

	b)	A potential transformer , ratio 1000/100 volt, has the following costants: Primary resistance= 94.5Ω , secondary resistance= 0.86Ω ,primary reactance= $66.2~\Omega$, Total equivalent reactance referred to primary side= 110Ω ,no load current= 0.02 A at 0.4 power factor. Calculate:(i) phase angle error at no load (ii) burden in VA at unity power factor at which the phase angle will be zero. Draw the phasor diagram of a CT & discuss the effect of variation of power factor of the secondary burden upon the performance.								
Q6 210	a) b)	Describe briefly with neat sketches about true r.m.s reading voltmeter. In a CRT, the anode to cathode voltage is 2000 V. The parallel deflector plates are 1.5 cm long and spaced 5 mm. The screen is 50 cm from the centre of the deflection plates. Find the following (i) The beam speed (ii) The deflection sensitivity of the tube. With suitable block diagram, explain the working of Basic spectrum Analyzer.								
Q7	a) b)									
Q8	a) b) c) d)	Write short answ Kelvin's double b Power factor met Frequency Count Mutual inductance	ridge er ers		210	210	(5 x 2)	210		
210		210	210	210	210	210		210		
210		210	210	210	210	210		210		
210		210	210	210	210	210		210		