Total N	Imber of Pages: 02	B.Te
i Olai IN	inider of Fages. 02	PET3I1
210	3 rd Semester Regular / Back Examination 2017-1 ANALOG ELECTRONIC CIRCUITS BRANCH: ECE, ETC Time: 3 Hours Max Marks: 100 Q.CODE: B780	3 210
An	wer Question No.1 and 2 which are compulsory and any for The figures in the right hand margin indicate mark	
210	210 210 210 210	210
Q1 a) b)	In an amplifier the increase in gain is 12 dB if the frequency doubled frequency is increased by 10 times, then the increase in gain will be a) 2.4 dB b) 20 dB c) 40 dB d) 60 dB	If the
C)	In a single stage RC coupled common emitter amplifier, the phase sl the lower 3 dB frequency is	lift is at
210 d)	a) 0^{0}_{210} b) 135^{0}_{10} c) 180^{0}_{10} d) 225^{0}_{210} Which op-amp circuit uses a capacitor in series with input and resist feedback path?	ance in
	a) Differentiating amplifier c) Logarithmic amplifier d) None of the above	
e)	In the analysis of common emitter amplifier, we may neglect a) h_{ie} b) h_{re} c) h_{fe} d) h_{oe}	
f)	In a push pull circuit the two transistors are	
210 a)	a) both <i>pnp</i> b) both <i>npn</i> c) one <i>pnp</i> and other <i>npn</i> d) either (a) or (b) The current gain of a BJT is	210
	a) $g_m r_0$ b) g_m / r_0 c) $g_m r_{\pi}$ d) g_m / r_{π}	
h)	In a FET, g_m varies as a) I_{DSS} b) $\frac{1}{I_{DSS}}$ c) $\frac{I_{DSS}}{2}$ d) $\sqrt{I_{DSS}}$	
i)	An inverting amplifier has $R_1 = 10 \text{ K}\Omega$, and $R_f = 150 \text{ K}\Omega$ then the O/F	voltage, if
	input voltage V _i = 1 volt a) -15 V b) -10 V c) 15 V d) -14 V	
²¹⁰ j)	Which op-amp circuit uses a resistance in series with input and a ca	pacitor in ²¹⁰
	feedback path?a) Differentiating amplifierc) Logarithmic amplifierd) None of the above	
Q2	Answer the following questions: Short answer type	(2 x ⁻
a)	For a transistor amplifier with self-biasing network the following c are used: R_1 = 4K Ω , R_2 = 4K Ω , Rc= 1K Ω . Find the approximate value of the self-biasing network the following c	
210	stability factor 'S'. 12^{-4} 132^{-1}	
b)	What is the approximate value of input impedance of a commamplifier with emitter resistance Re?	on emitter
C)	The two stages of a cascade amplifier have individual upper cutoff f f1= 5 MHz and f2= 3.33MHz. What is the best approximation for cutoff frequency of the cascade combination?	•
d)	Why square wave is fed to an amplifier for testing purpose?	
e) ²¹⁰ f)	What is a Barkhausen criterion for oscillation for an oscillator? h_{12} and h_{21}° are small signal low frequency equivalent hybrid param	neters of a
	transistor. Interpret them.	
g)	An RC amplifier stage has a bandwidth of 500 KHz. What will be th	e rise time

210		210 210 210 210 210		210
210	i) j)	A non-inverting Op-Amp with input voltage of 1V is connected to a power supply of 10V. If input resistance of the amplifier is 45 K Ω and feedback resistance is 540 K Ω , then what is the maximum output voltage? What is the rate (in mV/ ⁰ C) of decrease of base to emitter voltage V _{BE} in a transistor in the forward bias with increase in temperature? A BJT is biased with a power supply of 12 V. For minimum dissipation, what is the drop across the transistor?		210
Q3	a)		(10)	
	b)	factor S_{ICO} , S_{VBE} S_{β} . Draw the circuit diagram. Design a voltage divider bias circuit for the given condition. $I_c=1mA$, $S_{ico}=20$, $\beta=100$, $V_E=1V$, $V_{CE}=6V$ and $V_{CC}=12V$. Draw the circuit diagram.	(5)	
Q4	a)	foodbook configuration	(10)	
210	b)		(5)	210
Q5	a)	State and explain the Barkhausen criterion for sustained oscillations. Discuss its importance in operation of an oscillator circuit.		
	b)	Describe Miller's effect and derive an equation for Miller input and output capacitance.	(5)	
Q6	a)	Sketch the circuit of a Wein-bridge oscillator and explain its operation. Whe determines its frequency of oscillation? Will oscillation take place if the bridg is balanced? Explain.		210
	b)	Explain the low frequency response of single stage RC coupled amplifier.	(5)	
Q7	a)	A complimentary symmetry push pull amplifier is operated with Vcc= \pm 10V, R _L = 5 Ω . Determine maximum output power, power rating of transistors and DC input power.	(10)	
210	b)	Discuss square wave testing of an amplifier. How it is useful?	(5)	210
Q8	a)	Draw and explain the principle of operation of a Cascade and a Cascode amplifier.	(10)	
	b)	Explain the Instrumentation amplifier with circuit diagram.	(5)	
Q9	a)	Which feedback technique is there in an emitter follower circuit? Draw the topology and derive the expression of input impedance Z_{if} for that feedback network.	(10)	
210	b)	Show that OP-AMP can be used as voltage buffer and controlled sources.	(5)	210

