Registrat	on No: 210	210	210	210	210	210
Total Nu	mber of Pages: ()3				3.Tech S31001
	3 rd Se	mester Reg	gular/Back Exa	mination 2017-1		
			screte Structu			
			BRANCH: CSE			
210	210	210	Time: 3 Hours		210	210
			Max Marks: 10 Q.CODE: B111			
۸ne	wer Question No		-		our from the re-	et
			-	gin indicate mai		51.
	· ·		•	5	-	
Q1	Answer the follow		ns.		(2	x 10)
a) 210	What is the law of i)Every Real Numb		r Positive ^a Negat		210	210
	ii) Every Real Num					
	iii) Every Real Nun	bers are Pos	sitive only			
b)	iv) Every Real Nun					
b)	Axiom for conjunct i)p \land q true when p					
	ii) $p \land q$ true when					
	iii) $p \land q$ true when		-	040		040
210 C)	iv) $p \land q$ true when Find Total number			210 a set baying 4 eler	210	210
0)	i)2 ¹⁶			a set having 4 eler		
	ii)2 ⁴					
	iii) 2 ¹²					
d)	iv)None of these	is another st	atomont such the	at n () a lis falso		
u)	p is a statement q i) Both p and q are	false		at p↔ q is laise.		
210	ii) Both p and q are		210	210	210	210
	iii)p is true q is fals	e				
e)	iv) None of these	her aranh wit	h 4 vertices then	find the number of	regions?	
•,	i) 4	ior graph mi			rogiono.	
	ii) 8					
	iii) 10 iv) None of these					
²¹⁰ f)		vertices an	d e edges then ²¹⁰	find the number e	daes in G ²¹⁰ C	210
	where G ^c is the c	omplement o	of G		5	
	i) v					
	ii) e					
	iii) ${}^{\nu}c_2$					
	iv) ${}^{v}c_2$ -e					
210 g)	A group of order 1 i) 2 and 4	U then ₂ tind ti	ne order of 210 s su	ib groups . ₂₁₀	210	210
	ii)2 and 8					
	iii) 6 only					
b)	iv) 2 and 5 A relation R define	on a set B t	hon what it's syn	nmetric closure?		
•••	i) $R \cup R^{-1}$		inen what it's syn			
	ii) \mathbb{R}^{-1}					
210	iii)R ² 210	210	210	210	210	210
:)	iv) None of these	vina rolation	in both ourses -		overnetric	
i)	Which of the follow define on A={1,2,3		is both symmet	nd as well as anti	Symmetric	
	i){(1,3) ,(3,1),(2,3)}	, *				
	ii){(1,2),(2,1)}					
210	210	210	210	210	210	210

210 j)	iii) $\{(1,1),(2,2),(3,3)\}_{210}$ 210 210 210 iv) $\{(1,1),(2,1)\}$ If (G ,*) Is a Group with binary operation * define as a*b=ab/2 and a,b \in (G *) then find the identity element ? i) 1 ii)2 iii)5 iv)None of these		210
Q2 Q2 a) b) c) d) e) f)	Answer the following questions: Short answer type Give anExample of exhaustive proof. Find total number of edges in case of 3-regular graph with 6 vertices. Find total number of symmetric relation for a set having 4 elements. Find the solution of the recurrence relation $a_n - 3a_{n-1} + 3a_{n-2} - a_{n-3} = 0$ Show that $\neg p \lor q \equiv p \rightarrow q$ What is the chromatic number of $K_{n,n}$?	(2 x 10)	210
210 g) h) i) j)	State 4- color theorem. ²¹⁰ If a cyclic group is of order 10 find all it's generator. A relation r " is sub set" define on a set B then show that r is a poset. Show that $a \equiv b \mod(7)$ is an equivalence relation.		210
Q3 a)	Using Generating function prove $\binom{-n}{r} = (-1)^r \binom{n+r-1}{r-1}$	(5)	
²¹⁰ b) c)	Using Generating function prove $\binom{-n}{r} = (-1)^r \binom{n+r-1}{r-1}$ Show that $\frac{1}{(x-1)^2} = \sum_{0}^{\infty} \binom{210}{(n+1)^2}$ Using Generating Function How many binary bit strings of length 7 are possible starting with 0 and	(5) (5)	210
Q4 a)	ending with 1 Using Modus ponens derive a conclusion for the following statements	(5)	
210 b) c)	If John has B in calculus ,he will graduate. John does have a B in calculus. Using Modus ponens derive a conclusion for the following statements ²¹⁰ If John has B in calculus ,he will graduate. John does have a B in calculus. If the races are fixed so the casino are crooked, then tourist trade will decline. if tourist trade decreases , then the police will happy. The police force never happy. Conclusion –the races are not fixed validate the above conclusion using rules of inference.	(5) (5)	210
Q5 a) ²¹⁰ b) c)	If $H \subset G$ and G is a group then show that if $a, b \in H \rightarrow ab^{-1} \in H$ then show that H is a subgroup of G. ²¹⁰	(5) (5) (5)	210
Q6 a) b) c)	Show that every field is an integral Domain. Show that S={e,*}, where * is multiplication , then S is a group. If for $\forall a \in (G, *)$ such that a=a ⁻¹ where (G,*) is a group and then show that (G,*) is an abellian group ₂₁₀ 210 210 210 210 210	(5) (5) (5)	210
Q7 a)	Prove that If a simple graph G(V,E) has n vertices and k connected components then maximum number of edges in the graph is $\frac{(n-k)(n-k+1)}{2}.$	(5)	
b)	Let G be a connected planner graph and n,e,f denote the number of vertices ,edges and regions respectively in a plane representation of G then show that n -e+f=2. 210	(5)	210
C)	Prove that G has a Hamilton circuit if $m \ge \frac{1}{2}(n^2-3n+6)$ where m is the number of edges and n is the number of vertices and G has no loops and multiple edges.	(5)	

210		210 210	210	210	210		210
Q8	a)	Draw the following hasse diagram i)	A ={a,b,c on rela	ation sub set } ii)D	20	(10)	
	b)	If L is a lattice then for every a,b in L ii)a∧b=a iff a ≺b	then show that i)	$a \lor b=b \text{ iff } a \prec b$		(5)	
Q9	a)	For any a,b,c,d in lattice (L, \leq) if $a \leq$ and $a \land c \leq b \land d$.	and c≤d the	n show that $a \lor c$	s≤b∨d	(10)	
	b)	Prove a and b are elements in a bo			b ^c are	(5)	
210		complement of a and b then $a \lor (a^c)$	\wedge b)=a \vee b and a	$\wedge (a^{c}_{2M}b)=a \wedge b.$	210		210

210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210

210	210	210	210	210	210	210	210