ιυια	I Nu	mber of Pages: 02	B.Tech
		2 rd Semester Begular/Beak Examination 2017 19	PET3I104
210		210 3 rd Semester Regular/Back Examination 2017-18 210 Digital Electronics	210
		BRANCH: ECE, ETC	
		Time: 3 Hours Max Marks: 100	
		Q.CODE: B1111	
An	swe	r Question No.1, Question No.2 which are compulsory and any four fron	η the rest.
210		The figures in the right hand margin indicate marks.	210
Q1		Answer the following questions: <i>multiple type or dash fill up type</i>	(2 x 10)
x 1	a)	A device which converts BCD to seven segment is called	(2 × 10)
	b)	A latch is sensitive.	
	C)	In 2's complement representation the number 11100101 represents the	
	4)	decimal number	
	d)	A decade counter skips i) binary states 1000 to 1111	
210		ii) binary states 0000 to 0011	210
		iii) binary states 1010 to 1111	
		iv) binary states 1111 to higher	
	e) f)	The number of digits in octal system is In the expression A + BC, the total number of minterms will be	
	"	In the expression A + DC, the total number of miniterins will be	
		i) 2	
210		ii) ₂₁₀ 3 ₂₁₀ ₂₁₀ ₂₁₀ ₂₁₀ ₂₁₀	21
		iii) 4	
	a)	iv) 5 BCD input 1000 is fed to a 7 segment display through a BCD to 7 segment	
	g)	decoder/driver. The segments which will lit up are	
		i) a, b, d	
		ii) a, b, c	
		iii) all	
210	h)	<i>iv)</i> 210 <i>a, b, g, c, d</i> 210 210 210 210 210 210	21
	,	i) TTL	
		ií) CMOS	
		iii) ECL	
	n	iv) BOTH I & II Which of the following memories uses one transister and one consister as	
	i)	Which of the following memories uses one transistor and one capacitor as basic memory unit	
210		i) 210 SRAM 210 210 210 210	21
		ii) DRAM	
		iii) Both SRAM and DRAM	
	iv	iv) None	
	j)	A 12 bit ADC is used to convert analog voltage of 0 to 10 V into digital. The resolution is	
		i) 2.44 mV	
		ii) 24.4 mV	
210		iii) 210 1.2 V 210 210 210 210 210	21
		iv) none of the above	
Q2		Answer the following questions: Short answer type	(2 x 10)
	a)	Convert $(11001)_2$ to grey code.	(= ·· •)
	b)	Differentiate between minterms and maxterms.	
	c)	Subtract 43 from 32 using 2's complement.	

	d) e) f) g)	How many flip-flops are required to make a 32-MOD binary counter? Convert the fractional binary number (11101.0101) to octal and hexadecimal. Realize a T-F/F from J-K F/F. Simplify the given expression using Boolean algebra: xy + x'y + x'y'		
210	h) i) j)	State De-Morgan's theorem and absorption law. Explain the applications of X-OR gate. What is the major advantage of ECL logic over TTL and CMOS ?		210
Q3 210	a) b)	Obtain the simplified expression for the following equations: i) $F(x,y,z) = \sum (0,1,4,5)$ ii) $F(a,b,c,d) = \prod (0,1,2,3,4,10,11)$ 210 210 210 iii) $F(w,x,y,z) = \sum (1,3,5,7,13,15)$ Implement the function $F = (AB + A'B')(CD' + C'D)$ using i) NAND gates	(10) (5)	210
Q4 210	a)	ii) NOR gates For the given Boolean function: F = xy'z + x'y'z + w'xy + wx'y + wxy i) Obtain the truth table ²¹⁰ ²¹⁰ ²¹⁰ ²¹⁰ ²¹⁰ ²¹⁰ ²¹⁰	(10)	210
210	b)	$F(w,x,y,z) = \sum(0,3,5,6,8,9,14,15)$ 210 210 210 210 210	(5)	210
Q5	a) b)	Design a 4 bit magnitude comparator circuit. A combinational circuit is defined by the following three functions: $F_1 = x'y' + xyz', F_2 = x' + y', F_3 = xy + x'y'$ Design the circuit with decoder and external gates.	(10) (5)	
Q6 210		What are the different types of shift register? The content of a 4-bit shift register is 1010. If the register is shifted 8 times to the right with a serial input 11010010. Explain its operation by showing the content of the register after each shift.	(10)	210
	b)	Design a state diagram for a 3-bit down counter. Derive its state table and draw its logic circuit diagram.	(5)	
Q7 210	a) b)	Design a state diagram for a 3-bit up counter. Derive its state table and draw its logic circuit diagram. What is a master slave flip-flop? Draw and explain the logic diagram of master slave D flip-flop using NAND gates	(10) (5)	210
Q8	a) b)	Draw a circuit for BCD to excess 3 code converter and list the PLA programming table for the same. Design a combinational circuit using ROM. The circuit accepts a 3-bit binary number and generates an output binary number equal to the square of the input number.	(10) (5)	
Q9	a) b) c) d)	Write short notes on any THREE : Mealy – Moore model of finite state machine Ring counter Full adder using half adder PROM	(5x3)	210