210	210	210	210	210	210	210
Regi	stration No.					
Total	number of pages				B.Tech. PCE3I001	
210	²¹⁰ CH	Time : Max Ma Q.COD	ESS CALCULA : CHEM, PT 3 Hours arks : 100 E : B1110	ATION 210	210	210
Ans	wer Question No		are compuisor est.	'y and any fou	r from the	
	The figure ssume suitable no of Humidity Chart	s in the right h otations and an	and margin inc <i>y missing data</i>	a wherever ne	-	210
1. (a) The molar com	lowing question position of a gas 50% H ₂ Oconder basis will be:	s is 10% H ₂ , 10%			
210	i) 10% ₁₀ ii) 5% iii) 18.18% iv) 20% b) A hydrocarbon	²¹⁰ oil is rated at 30	210 210	210	210	210
210	288.8 K? i) 1.235 ii) 0.876 iii) 0.300	210	210	210	210	210
(aygen is supplied excess reactant su		tion of 36 gato	m of	
210	d) A mixture of ox	ygen and sulphu nt of themixture is ::				210
210	the more volatil i) At the bubble ii) At the dew-po iii) Between the iv) At the norma	is in equilibrium ecomponent in th point temperature bubble point and l boiling point of t	e vapour is maxir e the dew-point te he mixture	mum: ₂₁₀ mperatures	210	210
210	temperature of and at 350 K th		n that A and B es of A and B are	form ideal solute respectively70	tions kPa	210

210	210	210	210	210	210	210	210
	(g	of water per k	above umidity of air at 1 g of dry air.Dete				
10	210	vapour in the ai i) 1.99 kPa ii) 2.55 kPa iii) 3.16 kPa	r. 210	210	210	210	210
	(h	iv) 3.87 kPa) With increase ir	n pressure, the he	at of vaporizatio	n of liquids		
		i) Decreases ii) Increases iii) Remain uncl iv) May increas	-				
10	210 (i)	 The heat of rea i) Independent of ii) Independent 		it changes with p		210	210
	(i)	iv) Independen products	t of the state of		•	and	
10	210	i) Latent heat of ii) The heat sup	vaporization to the plied to the absolu pacity of a substar above	ute temperature	210	210	210
	2.	Answer the fol	lowing questions			(2x10)	
	(a (b	-	mality = Molarity x ater contains 1575 aht percentage.	•	nd the concentra	ation	
10	210 (C) A body weighs the specific grav	1 kg in air, 0.9 kg vity of the liquid.	210	210	210	210
	(d	contains 50% kg/l, find the mo	olution of trietha FEA by weight. If plarity of this solution	the density of ion.	this solution is	1.25	
	(e	of water at 360	sius-Clapeyron eq K if the vapour pr aporization in this	essure at 373 K	is 101.325 kPa.	The	
10	210 (f		stems, prove that nidity, p _A ²¹⁰ = partial f the system.				210
	(g (h) Calculate the w at 98 kPa and 1	eight of sulphur di		el having 2 m ³ voli	ume	
	(i) (i)	Why purging op	eration is perform seous n-butane is	ned on recycle st		e its	
10	210	-	and kJ/kg units u				210
	3. (a		nose molecular w % O on weight ba			% H, (5)	
	(h) Ahydrochloric a	icid solution has	a molarity of 20		5 80. (5)	
	() (C	Calculate the de	kg occupies a vo	-	> -+ 202 K 0-1	ulate (5)	

(b) A fuel having composition C_nH_m and no inerts is fired in a furnace. If the mole fraction of oxygen in flue gas is " α " on dry basis, prove that:

% Excess Air =
$$\left[\frac{100 \ \alpha}{1 - 4.762 \ \alpha}\right] \left[\frac{19.048 + 3.762 \ r}{4 + r}\right]$$
,
where, $r = \frac{m}{n} = \frac{atoms \ of \ hydrogen}{atoms \ of \ carbon}$.

5. (a) A security guard at an industrial park can work well upto an absolute (5) humidity of 0.017 kg/kg dry air. On one hot summer day, the dry-bulb and wet-bulb temperatures are found to be 47°C and 42°C respectively. Can the guard workwell ? Give your comments.

- (b) Moist air of 35 m³ volume at a total pressure of 101.325 kPa and 30°C contains water vapour in such proportions that its partial pressure is 3.0 kPa. Without total pressure being changed, the temperature is reduced to 15°C and some of the water vapour is condensed. After cooling, it is found that the partial pressure of water vapour is 1.5kPa. Calculate: volume of air at 15°C and weight of water condensed.
- 6. (a) A mixture of benzene vapour and nitrogen gas at 110 kPa and 325 K (7) contains benzene vapour to the extent that it exerts a partial pressure of 14.5 kPa. The vapour pressure of benzene is given by the Antoine equation as:

$$\ln p^0 = 13.9 - \frac{2788.5}{T - 52.4}$$

Determine: the mole fraction of benzene in the mixture, the weight fraction of benzene in the mixture, the molal humidity, the absolute humidity, and the molal saturation humidity.

- (b) In a sulphuric acid plant, pyrites containing 50 % (weight) sulphur is burnt to give SO₂ which is subsequently converted to SO₃ in a converter. The analysis of the burner gas shows 9 % SO₂ and 7 % O₂. The cinder is analysed and it is found that it contains 3 % sulphur as SO₃. Assuming that all the sulphur in the feed is burnt, calculate the weight of pyrites burnt per 100 kmol SO₃-free burner gas.
- (a) Calculate the heat of formation of ZnSO₄ from elements by using ²(5) Hess's law and following data:

3	
Zn + S →ZnS	ΔH = - 184.23 kJ/mol
$2 \text{ ZnS} + 3 \text{ O}_2 \rightarrow 2 \text{ ZnO} + 2 \text{ SO}_2$	ΔH = - 929.5 kJ/mol
$2 \text{ SO}_2 + \text{O}_2 \rightarrow 2 \text{ SO}_3$	ΔH = - 196.8 kJ/mol
$ZnO + SO_3 \rightarrow ZnSO_4$	ΔH = - 230.3 kJ/mol
T	()

- (b) The heat capacity of CO₂ is given by the equation: $C_p = 26.54 + (42.45 \times 10^{-3} \text{ T}) - (14.29 \times 10^{-6} \text{ T}^2)$ where, C_p is in kJ/kmol.K and T is in K. How much heat is required to heat 1 kg of CO₂ from 320 K to 980 K?
- (c) Calculate the heat of reaction for the esterification of ethyl alcohol with acetic acid if the standard heats of combustion are: ethyl alcohol (I), 1367 kJ/mol; acetic acid (I), 872 kJ/mol; and ethyl acetate (I), 2275 kJ/mol.

210

(5)

(8)

21

(3)

(10)

210	210	210	210	210	210	210	210
210	8. 210	with 50% excest combustion, ca temperature.Da	s air (preheated lculate the theory ta:Standard hea kcal/gmol respect .000677 T :01413 T .00018 T	t of formation of C	ning complete	(15) 210	210
	9. (a (b (c) Effect of tempe	stance plots rature on heat of	f reaction		(5) (5) (5)	
210	210	210	210	210	210	210	210

210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210

210	210	210	210	210	210	210	210

210 210 210 210 210 210 210 210 210 210