
_	stra	ation No:		
Tota	l Nu	ımber of Pages: 02	B.Tech	
		Po 3 rd Semester Back Examination: 2017-18	CEC4201	
		ANALOG FLECTRONIC CIRCUITS		
210		BRANCH: AEIE, CSE, ECE,		21
		EEE, EIE, ELECTRICAL, ETC, IEE, IT		
		Time: 3 Hours		
		Max Marks: 70 Q.CODE: B1166		
		Answer Question No.1 which is compulsory and any five from the rest		
	-	The figures in the right hand margin indicate marks.	_	
210		210 210 210 210 210	(2 (2)	21
Q1		Answer the following questions:	(2 x 10)	
	a)	With mathematical equation and suitable sketches show that operating point varies with RC (load).		
	b)	State the difference between FET and BJT.		
	c)	Derive the relationship between α and β in BJT.		
	d)	What is Barkhausen Criterion to sustain oscillation?		
210	e)	An amplifier with voltage gain of 60dB uses 1/20 of its output in negative		21
	f)	feedback. Calculate the gain with feedback in dB? Draw Darling pair and write its application.		
	g)	What is the need of current mirror? Draw one circuit.		
	h)	What are the minimum values of gain in inverting and non-inverting		
	,	amplifiers?		
	i)	What do you mean by CMRR of an OPAMP?		
210	j)	What is virtual ground? What is its effect on an op-amp operation?		21
Q2	a)	In a BJT fixed bias circuit β =150, V_{CC} =10 V , R_{C} =1 $K\Omega$, R_{B} =100 $K\Omega$,	(5)	
		$C_{in}=C_{out}=10\mu f$, $C_E=100\mu f$. Determine the Q-point of the circuit.	(=)	
	b)	Derive an expression for total collector current in CE configuration.	(5)	
Q3	a)	Show that the transconductance gm of a JFET is related to the drain current	(5)	
210	•	IDS given by $\alpha = \frac{2}{2\sqrt{I}}$ where the symbols their usual		21
		IDS given by $g_m = \frac{2}{ V_P } \sqrt[3]{I_{Dss}I_{Ds}}$, where the symbols have their usual		
		meanings.		
	b)	What is stability factor? Write the general Expression for $S_{I\!CO}$ and S_{β} .	(5)	
04	۵۱	Design a voltage divider circuit using a cumply 24\/ 8=110 and an appreting	(5)	
Q4	a)	Design a voltage divider circuit using a supply 24V, β =110 and an operating point of I _{CQ} =4mA and V _{CEQ} =8V. Choose V _E =1/8 V _{CC} .	(5)	
210	b)	Draw and analyze a D-MOSFET configuration. Why is it called so?	(5)	21
			(0)	
Q5	(a)	For a class B amplifier providing a 22-V peak signal to an 8- ohms load and a	(6)	
		power supply of V_{cc} = 25 V, determine Input power $P_i(dc)$		
		Output Power Po(ac)		
		Output i ower i o(ac)		
		Circuit Efficiency.		

