		Registration No:	
		Total Number of Pages: 03 210 210 210 210 210 100 MBA 15MNG101 15MNG101 15MNG101 15MNG101 15MNG101 15MNG101	210
		1 st Semester Regular/Back Examination 2017-18 STATISTICS AND DECISION SCIENCE BRANCH : MBA Time: 3 Hours Max Marks: 100 Q.CODE: B1160	
		Answer Question No.1 and 2 which are compulsory and any four from the rest. The figures in the right hand margin indicate marks.	210
Q1	a)	Answer the following questions: The quartiles of a normal distribution are 47.3 and 52.7 respectively, then mean deviation about	(2x10)
	,	mode is and range is The mean and S.D. of a normal distribution are 10 and 6, the point of inflexion is	
	b)	and coefficient of kurtosis is and if r=± 1 then two	210
	c)	If T=0.6, then coefficient of non-determination is and if r=± 1 then two regression line are to each other.	210
	d)	Two variates x and y are given by y=2-3x, if variance of x is 9, then variance of y is and is a unitless measure of dispersion.	
	e)	If each of the value x is divided by 2 and of y is multiplied by 2, then coded value b_{vu} is times of byx and if m_2 =4 and m_3 =8 the skewness is	
	f)	In a simplex method the pivot (or key element) can be sign and	
	g)	constraints involve equal sign require use of variables. Planning military strategy is an application of and prediction of electoral	210
	h)	behaviour in election is made by analysis. If in a game the payment are made from and among the players only then the game is called and assignment problem is a particular case of	
	i)	If λ =10 customers per hour and μ = 15customers per hour then the traffic intensity is and expected number of customers in queue is	
	j)	If anevent B has occurred and it is known that $P(B)=1$, then conditional probability $P(A/B)$ is and for a binominal distrution if $n=6$ and $P(3):P(4)=8:3$, then value of p is	210
Q2		Answer the following questions:	(2×10)
	a) b)	If n=10, $\Sigma x_i = 110$, $\Sigma (x_i - 5)^2 = 1000$, then find S.D of x. If S.D of 'n' natural numbers is 2, then find value of 'n'.	
	c)	What is Probability that two persons borne on the same day. (Ignoring date).	
	d) e)	A coin and a dice are thrown. What is probability of getting a head or an even number? The sum of 25 observations is 400 and the sum of squares of observations is 8900, find coefficient of variability.	210
	f)	A speaks truth is 75% and B is 80% of the cases are they likely to contradict each other narrating the same incident.	
	g)	The regression coefficient of x on y is 0.6, write down the regression coefficient of u and v, where $u+3x=10$ and $2y+5v=25$.	
	h)	If λ =20 customers per hour and μ = 25customers per hour then find expected waiting time in system and in queue.	
	i) j)	If Q_1 =26, Q_3 =76 and coefficient of Skewness=0.2, find median. 210 210 A pair of dice is thrown 3 times. If getting a doublet is considered as a success, find the probability of 3 successes.	210

Q3 Find optimal strategies for firm A, firm B and value of the game from the following pay-off matrix **(15)** by using dominance rule.

		Firm	_	
210	35 ²¹	[°] 3525	5	210
	30	2015	0	
Firm A	40	500	10	
	55	6010	15	

Q4 Find B.F.S and T.C. from the following T.P by NWCM and then test for optimality by 'MODI' (15) method. Warehouse

Plant	W1	W2	W3	W4	Supply
P1	6	2	6	12	120
P2	4	4	2	4	200
P3	13	8	7	2	80
Demand	50 o	80 210	90 210	180 210	210

Q5 a) A Sample of 100 arrivals of customers to a departmental store is according to the following distribution:

Time between arrival (minutes)	1	1.5	2	2.5	3
Frequency	18	15	36	19	12
210 210	210	21	0	210	210

210

Simulate for next 10 time between arrivals and time of arrivals by using random numbers : 25,39,65,76,12,05,73,89,19,49.

- b) Mean and S.D. of 100 observations are 40 and 5.1 respectively. By mistake, one observation is misprint as 50 against 40, then find corrected mean and S.D.

Numbers of units withdrawn from inventory.

			Tomorr	OW									
		Тс	5 10 5 0.6 0.4 oday 100.3 0.3	12 0 0.4									
210		210	120.1 0.3	0. <u>6</u> 10	210	210	210	210					
	b)	A municip distributio	day transition matrix b al corporation puts 10 n with a mean of 60 c be replaced after 20 c	0,000 light b lays and a s	ulbs in the street. I	f lives of bulbs t							
210		210	210	210	210	210	210	210					

(9)

210

210

210

Q7	a)	Time taken in minutes by workers for different jobs are given in the matrix.	
----	----	--	--

	Q7	a)	Time tak	en in min	utes by wor	kers for different	jobs are giv	en in the matrix.		(9)
210			210		Jobs	210	210	210	210	210
-10			W	orkers	1	2	3	4	5	210
			A		2	9	2	7	1	
			B		6	8	7	6	1	
			C		4	6	5	3	1	
			D				7	3		
					4	2			1	
			E		5	3	9	5	1	
210			Find opti	mal assig	nment sche	dule⁵bỳ HAM.	210	210	210	210
		b)	3x+2y=1	0 and 6x+	es are give -y=15, coefficient.	n below.				(6)
	Q 8	a)								(7)
210		b)	(r≕corre Write sho	lation coe	fficient)	210	210	210	210	210
			a) Maxim	nin Criterio ax Criterio	on. on.					(4) (4)
210			210	2	210	210	210	210	210	210
210			210	:	210	210	210	210	210	210
210			210	:	210	210	210	210	210	210
210			210	;	210	210	210	210	210	210

(9)