(a) What are correlation diagram? Draw and discuss the qualitative correlation diagrams of d¹ octahedral and d⁹ tetrahedral system.

OR

- (b) Discuss the crystal field approach to explain magnetic behaviour of transition metal complexes.
- (a) Write note on artificial radioactivity.
 Distinguish between natural and artificial radioactivity.

OR

(b) Discuss the use of radioisotopes in agriculture and industry.

M. Sc. — Chem – IS (402)

2016 (January)

Time: 3 hours

Full Marks: 80

The figures in the right-hand margin indicate marks.

Answer from both the Sections as per direction.

(BASIC INORGANIC CHEMISTRY)

Section - A

- 1. Answer any **four** of the following : $4\times4 = 16$
 - (a) On the basis of hybridisation, discuss the geometry of the following molecule:
 - (i) CIO₄
 - (ii) 1F₇
 - (b) Discuss the various functions that influence the magnitude of crystal field splitting.
 - (c) Discuss the drawback of valence bond theory.

YJ - 123/2 (Turn over)

- (d) Write note on Paragmatism.
- (e) Differentiate between nuclear fusion and nuclear fission reactions.
- (f) Write note on Nephelauxetic Series.

OR

Answer all questions from the following :

 $2 \times 8 = 16$

- (a) Calculate magnetic moment for Cr⁺³ and Cu⁺ ion.
- (b) Which of the following complexes have larger crystal field splitting of d orbitals and why [Co(H₂O)₆]⁺² or [Co(H₂O)₆]⁺³?
- (c) What is radioactivity? In what unit radioactivity is measured?
- (d) Explain the term mass defect and binding energy?
- (e) What is magnetic susceptibility?
- (f) Define CFSE
- (g) What type of Geometry is possible for the following type of hybridisation?

(2)

(i) d^2sp^3

C

Contd.

- (ii) dsp²
- (h) Why He2 exist whereas He2 does not?

Section - B

Answer all questions :

 $16 \times 4 = 64$

3. (a) Explain how the atomic orbitals combine to form bonding and antibonding molecular orbitals. What are the limitations of such combination?

OR

- (b) Discuss with the help of MO theory the formation of N₂ and F₂ molecule. How does the theory explain the difference in reactivity of N₂, O₂, F₂?
- (a) Discuss the Sigma and Pi metal ligand bonding in transition metal complexes with reference to tetrahedral transition metal compelxes.

OR

(b) Discuss Sigma and Pi bonding in squire planner complexes by constructing a MO diagram for [PtCl4]⁻².

YJ - 123/2

(3)

(Tum over)