Ricus

M.Sc-Chem-IIS- (408)

Derive an expression for entropy production and entropy flow in an open system.

 Describe Lindemann-Hinshelwood theory of unimolecular reaction and compare it with Rice-Ramsperger-Kassel-Marcus theory.

Or

What are fast reactions? Illustrate the technique used in studying kinetics of fast reactions.

2017

Time: 3 hours

Full Marks: 80

The figures in the right-hand margin indicate marks.

Answer from both the Sections as directed.

(Physical Chemistry-II)

SECTION-A

Answer any four questions.

 4×4

- 1. (a) Prove that q and w are not state functions.
 - (b) One mole of N₂ gas in a cylinder at 300 K is allowed to expand isothermally against an external pressure of 5 atm from a volume of 1 dm³ to a volume of 3 dm³. Assuming ideality calculate q, w, Δu and ΔH.
 - (c) Derive the law of equiparation energy from 1st principle.
- (d) For neon gas in 10 cm³ box at 300 K calculate the number of available states with energy less than 3 KT.

- (e) The rate constant for a reaction at 30 °C is exactly doubled the value at 20 °C. Calculate the activation energy.
- (f) Write the general features of a fast reaction.

Or

- 2. Answer all questions from the following: 2×8
 - (a) Define the term molar heat capacity at constant volume.
 - (b) Distinguish between isothermal and adiabatic process.
 - (c) Define canonical ensemble.
 - (d) Write the Onsagar's reciprocity relation.
 - (e) What is kinetic salt effect?
 - (f) State first law of thermodynamics.
 - (g) What do you mean by the term relaxation time in fast reactions?
 - (h) One mole of an ideal gas is expanded isothermally at 298 K until the volume is doubled. Find the values of $\Delta S_{\rm gas}$ and $\Delta S_{\rm total}$ when the expansion is carried out reversibly.

SECTION-B

Answer all questions.

 16×4

3. What is fugacity? How can you determine fugacity from (i) equation of state, and (ii) approximation method?

Or

Discuss Nernst heat theorem and its application to solids.

- 4. (a) Describe an expression for molecular translational partition function of an ideal gas.
 - (b) Calculate the translational partition function for benzene (molar mass 78 gm/mol) in a volume of 1 m³ at 25 °C.

Or

Maximizing the thermodynamic probability of a macrostate and involving Lagrange's undetermined multiplier derive the expression for Bose Einstein statistics.

Verify the Onsagar's reciprocal relations for a simple reversible reaction.