|--|

Total Number of Pages: 02

B.Tech BE2101

1st Semester Back Examination 2016-17 BASIC ELECTRONICS

BRANCH: ALL

Time: 3 Hours

Max Marks: 70 Q.CODE: Y513

Answer Question No.1 which is compulsory and any five from the rest.

The figures in the right hand margin indicate marks.

Q1 Answer the following questions:

(2 x 10)

- a) What do you mean by barrier potential across a P-N junction?
- b) Discuss the advantages of negative feedback.
- c) Differentiate between β_{ac} and β_{dc} .
- d) Explain virtual ground concept in OPAMP.

e)

Find the output voltage Vo. Assume $\pm V$ sat = $\pm 12 \text{ V}$ for Op-amp.

- f) Perform the following subtraction using 2's compliment method $(18)_{10} (29)_{10}$
- g) What is the difference between a latch and a flip flop?
- **h)** Mention the Barkhausen criteria of oscillation.
- i) A Lissajous pattern on a CRO has six horizontal tangencies and two vertical tangencies. The frequency of the horizontal input waveform is 3 KHz. Find the frequency of the vertical input waveform.
- Define noise margin of an inverter.

Q2 What is base width modulation effect?

(2+8)

Mention its consequence on the input and output characteristics of common base and common emitter configuration.

Q3 a)

Draw the output waveform V_o for the clipper circuit shown in the figure. Assume the diode to be ideal one.

- **b)** What is the need of biasing in a transistor amplifier? Draw and explain the circuit of a voltage divider bias CE amplifier.
- Q4 a) Implement the following function using NAND gates only. $F(A,B,C,D) = A \overline{B} + \overline{A} B$ (5)
 - b) Implement the following function using multiplexor. (5) $F(A,B,C) = \sum m(1,4,6,7)$
- Q5 a) Draw and explain a basic integrator circuit using op-amp. What are its
 limitations and these are overcome?
 - b) What is CMRR in an op-amp? What is its significance? The CMRR of an op-amp is 80 dB and the common mode gain is 0.5. Find the differential mode gain of the op-amp.
- Q6 a) Explain how input impedance, output impedance, voltage gain and bandwidth changes when negative feedback is used in the amplifier circuit.
 - b) A common emitter amplifier has a mid band frequency of 300. The upper and lower 3 dB frequency of the amplifier is 20KHz and 100 Hz respectively. A negative feedback of 10% is applied to the amplifier circuit. Find the new gain and bandwidth after feedback.
- With the help of block diagram showing essential components explain the working of CRO. (10)
- Q8 Write short answer on any TWO: (5 x 2)
 - a) Zener breakdown
 - b) Instrumentation amplifier
 - c) Differentiate between static and dynamic RAM.
 - d) RC phase shift oscillator