										1		i		
Registra	ation no:											l		
Total Number of Page		ges: (02	210			210	10		210			210	<u>B.Tech</u> BE2103
210	210 ver Questio	on N	o.1 [•]	Th 210 whice	HER BR/ Tin Ma Q.0 ch is	MOI ANCI ne: 3 x Ma COE s coi	DYN H(S): 3 Ho arks DE:Y mpu	AMIONICAL AMIONI	CS y an	21 nd aı	ny fi	ve fro		ne rest.
Q1 a) b)	Answer the Distinguish What is an i	e follo between	owing een d	g que hang iagra	estion le of m?	ns: chan	ge of	state	e, pat	th an	d pro	cess.	210	(2 x 10)
c) d) e) f) g) ²¹⁰ h) i)	What is PM Define entro Draw phase Differentiate What do yo What are in What is the	M2? \ opy presented equile betwoeld bet	Why rincip libriu veen an by ed po	le an m dia refrig satu	d wri agran Jerato Iration	te tw n on or and n pre orake	o app T-s p d hea ssure pow	olicati lot fo at pur e and er of	ion o r wat np satu an ei	f it. er. Iratiö	n tem	peratu		
Q2	What are the exposed to into thermal entropy included work necess 2.093 KJ/kg	the a al eq rease sary t	tmos uilibr of tl to co	pher ium he₃ur nvert	e wh with nivers the	ich is the se. (b wate	at 2 atm b) Wher bac	:0 ⁰ c. ⁻ noshp nat is ck inte	The in the here the the the the the the the the the th	ce m .(a) minii at -	nelts a Dete mum 5°c? o	and co rmine amour c _p of ic	mes the nt of	(2+8)
Q3 a)	Show that e	energy	/ is a	prop	erty	of sys	stem.							(5)
b)	The following marine diese piston 1.2 m 0.06m, spring gas to pisto	el eng n, area	gine a of i lue 1	spee indica	d 150 ator d	0 rpm liagra	n cylii am 5.	nder 5 x 1	diam 0 ⁻⁴ m	eter 1 ² , le	0.8 r	n, stok of diag	ke of	(5)

Q4 ₂₁₀	a)	What is carnot cycle? What are the four process which constitute the cycle? Explain with T-S and P-V diagram.							
210	b)	A reversible heat engine operates between two reservoirs at temperature of 600°c and 40°c. The engine drives a reversible refrigerator which operates between reservoirs at temperature of 40°c and -20°c. The heat transfer to the heat engine is 2000Kj and the net work output of the combined engine refrigerator plant is 360Kj. (a) Evaluate the heat transfer to the refrigerant and the net heat transfer to the reservoir at 40°c. (b) Reconsider (a) given that the efficiency of the heat engine and the COP of the refrigerator are each 40% of their maximum possible values.	(5)						
Q5 ²¹⁰	a)	What do you understand by path function and point function? Show that	(5)						
		work is path function and not property?							
210	b)	Steam at 0.8 Mpa 250 ⁰ c and flowing at the rate of 1kg/s passes into a pipe carrying wet steam at 0.8 Mpa 0.95 dry, After adiabatic mixing the flow rate is 2.3 kg/s. Determine the condition of steam after mixing. The mixture is now expanded in a frictionless nozzle isentropic ally to a pressure of 0.4 Mpa. ² Determine the velocity of steam leaving the nozzle. Neglect the velocity of steam in the pipeline.	(5)						
Q6	a)	Draw the phase equilibrium diagram for a pure substance on P-T							
		coordinates. Why does the fusion line for water have negative slope?							
210	b)	A vessel of volume 0.04 m ³ contains a mixture of saturated water and saturated steam at a temperature of 250 °c. The mass of the liquid present is 9 kg. Find the pressure, the mass, the specific volume, the enthalpy, the entropy and the internal energy.	(5)						
Q7		Show that through one point there can pass only one reversible adiabatic. Establish the inequality of clausius.	(10)						
Q8 °	a)	Write short answers on any TWO: 210 210 210 210	(5 x 2)						
	b)	Internal combustion engine							
	c)	Heat pump							

d) steam power plant