| | | | | | | | | | | 1 | | i | | | |---|---|--|---|----------------------------------|---|--|---|--|--|-------------------------------|----------------------------------|--|---------------------|-------------------------| | Registra | ation no: | | | | | | | | | | | l | | | | Total Number of Page | | ges: (| 02 | 210 | | | 210 | 10 | | 210 | | | 210 | <u>B.Tech</u>
BE2103 | | 210 | 210
ver Questio | on N | o.1 [•] | Th
210
whice | HER
BR/
Tin
Ma
Q.0
ch is | MOI
ANCI
ne: 3
x Ma
COE
s coi | DYN
H(S):
3 Ho
arks
DE:Y
mpu | AMIONICAL AMIONI | CS
y an | 21
nd aı | ny fi | ve fro | | ne rest. | | Q1
a)
b) | Answer the Distinguish What is an i | e follo
between | owing
een d | g que
hang
iagra | estion
le of m? | ns:
chan | ge of | state | e, pat | th an | d pro | cess. | 210 | (2 x 10) | | c)
d)
e)
f)
g)
²¹⁰ h)
i) | What is PM Define entro Draw phase Differentiate What do yo What are in What is the | M2? \ opy presented equile betwoeld bet | Why
rincip
libriu
veen
an by
ed po | le an
m dia
refrig
satu | d wri
agran
Jerato
Iration | te tw
n on
or and
n pre
orake | o app
T-s p
d hea
ssure
pow | olicati
lot fo
at pur
e and
er of | ion o
r wat
np
satu
an ei | f it.
er.
Iratiö | n tem | peratu | | | | Q2 | What are the exposed to into thermal entropy included work necess 2.093 KJ/kg | the a
al eq
rease
sary t | tmos
uilibr
of tl
to co | pher
ium
he₃ur
nvert | e wh
with
nivers
the | ich is
the
se. (b
wate | at 2
atm
b) Wher bac | :0 ⁰ c. ⁻
noshp
nat is
ck inte | The in the here the the the the the the the the the th | ce m
.(a)
minii
at - | nelts a
Dete
mum
5°c? o | and co
rmine
amour
c _p of ic | mes
the
nt of | (2+8) | | Q3 a) | Show that e | energy | / is a | prop | erty | of sys | stem. | | | | | | | (5) | | b) | The following marine diese piston 1.2 m 0.06m, spring gas to pisto | el eng
n, area | gine
a of i
lue 1 | spee
indica | d 150
ator d | 0 rpm
liagra | n cylii
am 5. | nder
5 x 1 | diam
0 ⁻⁴ m | eter
1 ² , le | 0.8 r | n, stok
of diag | ke of | (5) | | Q4 ₂₁₀ | a) | What is carnot cycle? What are the four process which constitute the cycle? Explain with T-S and P-V diagram. | | | | | | | | |--------------------------|----|--|---------|--|--|--|--|--|--| | 210 | b) | A reversible heat engine operates between two reservoirs at temperature of 600°c and 40°c. The engine drives a reversible refrigerator which operates between reservoirs at temperature of 40°c and -20°c. The heat transfer to the heat engine is 2000Kj and the net work output of the combined engine refrigerator plant is 360Kj. (a) Evaluate the heat transfer to the refrigerant and the net heat transfer to the reservoir at 40°c. (b) Reconsider (a) given that the efficiency of the heat engine and the COP of the refrigerator are each 40% of their maximum possible values. | (5) | | | | | | | | Q5 ²¹⁰ | a) | What do you understand by path function and point function? Show that | (5) | | | | | | | | | | work is path function and not property? | | | | | | | | | 210 | b) | Steam at 0.8 Mpa 250 ⁰ c and flowing at the rate of 1kg/s passes into a pipe carrying wet steam at 0.8 Mpa 0.95 dry, After adiabatic mixing the flow rate is 2.3 kg/s. Determine the condition of steam after mixing. The mixture is now expanded in a frictionless nozzle isentropic ally to a pressure of 0.4 Mpa. ² Determine the velocity of steam leaving the nozzle. Neglect the velocity of steam in the pipeline. | (5) | | | | | | | | Q6 | a) | Draw the phase equilibrium diagram for a pure substance on P-T | | | | | | | | | | | coordinates. Why does the fusion line for water have negative slope? | | | | | | | | | 210 | b) | A vessel of volume 0.04 m ³ contains a mixture of saturated water and saturated steam at a temperature of 250 °c. The mass of the liquid present is 9 kg. Find the pressure, the mass, the specific volume, the enthalpy, the entropy and the internal energy. | (5) | | | | | | | | Q7 | | Show that through one point there can pass only one reversible adiabatic. Establish the inequality of clausius. | (10) | | | | | | | | Q8 ° | a) | Write short answers on any TWO: 210 210 210 210 | (5 x 2) | | | | | | | | | b) | Internal combustion engine | | | | | | | | | | c) | Heat pump | | | | | | | | d) steam power plant