Registra	ation no:											
Total Nu	ımber of Pages: 2	210	210		210	210	<u>B.Tech</u> BS1102	21				
1 st Semester Back Examination 2016-17 PHYSICS - I												
BRANCH(S): ALL												
210	210	210	me: 3 Ho x Marks		210	210		21				
			CODE: Y									
Answer Question No.1 which is compulsory and any five from the rest. The figures in the right hand margin indicate marks.												
	The figures	n the rigi	nt hand i	margın ı	indicate	marks.						
Q1 ₂₁₀ a)	Answer the following Graphically show he oscillator and the dr	w the phas	e differenc				(2 x 10)	21				
b)	force. In a Newton's rings experiment, the radius of the 2 th dark ring is found to be 0.005cm. What will be the radius of the 8 th dark ring?											
c)	Distinguish between	Fresnel ar	nd Fraunho	offer type of	diffraction.							
₂₁₀ d)	Calculate the thickness of double refractive plate capable of producing a path difference of $\frac{\lambda}{4}$ between ordinary and extra ordinary ray. Given:											
	a path difference of $\mu_o = 1.540, \ \mu_o = 1.$	1		na extra o	rdinary ray	/. Given:						
e)	Graphically show th	e amplitude		of an unde	er damped	l harmonic						
f)	oscillator with respe State Gauss' diverg		em.									
g)	Write SI unit of the	electric disp	lacement.	43	2	_2						
₂₁₀ h) i)	Calculate the gradie Write the Schroding							21				
j)	moving freely in the Calculate the proba of infinite width.		ing of a wa	ave function	on through	n a barrier						
Q2 a)	Set up the differer	itial equation	on of moti	ion for fo	rced osci	llation and	(5)					
²¹⁰ b)	derive the condition Set up the differen			ntion for	a cõiunled	l oscillatêr	(5)	21				
D,	having two equal r	nasses cor	nnected by		•		(0)					
Q3 a)	equations using nor Derive the expression			y for diffra	action due	to single	(7)					
	slit and obtain the a	ngular posit	ions for Pr	incipal ma	aximum, m	ninima and						
	Secondary maxima.											
²¹⁰ b)	A plane diffraction g	•	_	•			(3)	21				
	order of spectrum o	oservable fo	or the wave	elength of	light 6000) Α ⁰ ?						

Q	(4 a)	State Brewster's law		relation betwee			(4)	0.4	
	b)	Describe the constr	uction and w		Prism.	210	(6)	21	
Q	(5 a)	Obtain the electromagnetic wave equations from Maxwell equations for free space in the absence of any charge and current sources. Show that electromagnetic wave travels with the speed of light in free space.							
	²¹⁰ b)	Distinguish between real current and displacement current.					(3)	21	
Q	(6 a)	State and explain Heisenberg's uncertainty principle. Using the uncertainty relation, show that electron does not exist inside nucleus.							
	b)	Write the characteri	Vrite the characteristics of a wave function in quantum mechanics.						
Q	!7 10	ctions for aphically	(10)	21					
Q	8 a)	Write short answe Zone plate	r on any TW	O :			(5 x 2)		
	²¹⁰ b)	Poynting theorem	210	210	210	210		21	
	c)	Compton effect							
	d)	Quantum mechanic	al tunneling						
	210	210	210	210	210	210		21	
	210	210	210	210	210	210		21	