Registration No:				
Total Number of Pages: 2 210 210 210 210			B.TECH AM1A001	210
1 st Semester Regular Examination 2016-17 APPLIED MATHEMATICS- I BRANCH(S): All Time: 3 Hours				
210		210 Max Marks: 100 210 210 Q.CODE: Y746		210
Answer Part-A which is compulsory and any four from Part-B. The figures in the right hand margin indicate marks.				
Part – A (Answer all the questions)				
Q1 ₂₁₀	a) b)	Answer the following questions: <i>fill in the blank</i> The curvature at any point on a circle with radius 10 is The asymptotes to the curve $xy^3 - x^2y + xy + 2x - y - 6 = 0$ which are parallel	(2 x 10)	21(
	c)	to the axis are The circular asymptote to the curve $r = \frac{2\theta}{\theta + 1}$ is		
040	d)	The number of arbitrary constants present in the solution of an ordinary differential equation depends on the of the equation.		04/
210	e)	Integrating factor for the equation $xdy - ydx = 0$ is		210
	f) g)	The maximum possible value of the rank of an 7x5 matrix is The dimension of the vector space generated by the vectors (2 0 1 0), (0 3 0 0) and (6 6 3 0) is		
	h)	A 2×2 matrix is both orthogonal and symmetric but it is not the identity matrix. The eigen values of this matrix are		
210	i)	For the equation $y'' + ay' + by = e^x$ with roots of the auxiliary equation as 1 and 2 the particular solution will take the form		210
	j)	The determinant of an orthogonal matrix is		
Q2	a)	Answer the following questions: Short answer type Find the asymptotes to the curve $xy(x+y) = a(x^2 - a^2)$ which are parallel to the axis.	(2 x 10)	
210	b) c)	Find out the radius of curvature of the parabola $y = x^2$ at the origin. Write down the sufficient (Lagrange's) conditions for a function of two variables to attain a maximum value.		210
	d)	Find the general solution of $y'' - 6y' + 9y = 0$		
	e)	Find out the ordinary differential equation whose two independent solutions are x^2 and x^2 lnx.		
	f)	Test whether the functions $x x $ and x^2 are linearly independent on the interval		
210	g)	[-1, 1]. 210 210 210 210 210 210 210 Find the Legendre polynomial $P_1(x)$ and $P_2(x)$ from the Rodrigues's formula.		210

- **h)** Find the radius of convergence of the power series $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{\sqrt{n^2+1}} x^n$
- i) What are algebraic multiplicity and geometric multiplicity of an eigen value of a matrix?¹⁰
- j) What is a normal matrix? Show that a skew-symmetric matrix is a normal matrix

Part – B (Answer any four questions)

- Q3 a) Find all the asymptotes of the curve given by $x^{3} x^{2}y_{\frac{1}{210}}xy^{2} + y^{3} + 2x^{2}\frac{1}{210}4y^{2} + 2xy + x + 2y_{0} + 1 = 0$ 210
 - **b)** Find the radius of curvature for the curve given parametrically by x = 3t and $y = t^2 6$ at t = 1. (5)
- **Q4** a) Find the extrema of the function $f(x, y) = x^3 + 3xy^2 3y^2 3x^2 + 4$ (10)
 - b) Due to global warming ice melts at a rate proportional to the amount present.

 If 2% of the original amount of ice melts in 100 years, how much will remain at the end of 1000 years?

 (5)
- **Q5** a) Solve $xy' + 2y = 3x^3y^{\frac{4}{3}}$ (10)
 - **b)** Solve $ydx + (y^2 x)dy = 0$ (5)
- **Q6** a) Solve $y'' 2y' + (4\pi^2 + 1)y = 0$, y(0) = -2, $y'(0) = 6\pi 2$. (10)
 - **b)** Solve $y'' + y = \tan x$. (5)
- Q7 a) Solve $y'' + x^2y = 0$ by series solution method (10)
 - Show that for the Legendre polynomial $P_n(x)$, $P_n(-x) = (-1)^n P_n(x)$.
- Q8 a) Show that the system of linear equations 7x 4y 2z = -6, 16x + 2y + z = 3 (10) has solution and hence solve it using Gauss elimination method.
 - Find the eigen values for the matrix $\begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix}$.
- Q9 a) Find out the type of conic section represented by the quadratic form $32x_1^2 60x_1x_2 + 7x_2^2 = -52 \text{ by transforming it to principal axis.}$
 - b) Show that the eigen values of a unitary matrix have absolute value 1. (5)