Registra	ation No:				
Total No	umber of Pages: 03 210 210 210 210 B.TECH 15BS1101				
1 st Semester Back Examination 2016-17 MATHEMATICS - I BRANCH(S): ALL					
210	Time: 3 Hours 210 Max Marks: 100 Q.CODE: Y747				
1	Answer Part-A which is compulsory and any four from Part-B. The figures in the right hand margin indicate marks.				
Q1 ₂₁₀ a)	through				
	I. (2,1) II) (4,24) III) (0,0) IV) (24,4)				
b)	The solution of the differential equation $y'' + y = 0$ satisfying the condition $y(0) = 1$, $y(\pi/2) = 2$, is				
₂₁₀ c)	The integrating factor of $\frac{dy}{dx} - y \tan x = x^2 i \sin \frac{210}{x^2}$.				
d)	The equation $M dx + N dy = 0$ is exact if				
e)	The value of the determinant $\begin{bmatrix} 1989 & 1990 & 1991 \\ 1992 & 1993 & 1994 \\ 1995 & 1996 & 1997 \end{bmatrix}$ is				
210 f)	$\begin{bmatrix} 8^{210} - 6 & 2 \end{bmatrix}$ $\begin{bmatrix} 210 & 210 & 210 \end{bmatrix}$				
	If two eigen values of $\begin{bmatrix} 8^{210} - 6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$ are 3 and 15, then the third eigen value				
,	is				
g)	The product of the eigen values of $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & {}^{21} - 1 \\ 0 & -1 & 3 \end{bmatrix}$ is $\frac{210}{10}$.				
h)	The maximum value of the rank of a 4X5 matrix is				
i)	The asymptote parallel to x -axis for the curve $f(x) = \frac{x-2}{x+1}$ is				
₂₁₀ j)	$P_{2n+1}(0) = \underbrace{\qquad \qquad \qquad }_{210}$, Where P_n is the Legendre polynomial.				

Q2		Answer the following questions:	(2 x 10)	
	a)	Determine the order and degree of $(y'')^{\frac{3}{2}} + y' = x^2 y$.	,	
	b)	Test the exactness of the differential equation		
210	c)	$2\sin 2x \sin h y dy = \cos 2x \cosh 2y dx$. 210 210 210 Formulate the differential equation for the R-C circuit with E = 100 volts,		
	•	c = 0.25 farad, R = 200 ohms.		
	d) e)	Define a linear differential equation of first order and give one example. What do you mean by linearly independent vectors? Are the following vectors		
	•	linearly independent? [2 -3], [3 6], [-1 4].		
	f)	Explain the conditions for which a system of linear equations will posses more		
210		than one equation, unique solution & no solution?		
	g) h)	Show that the determinant of a unitary matrix has absolute value 1. Find the asymptote parallel to the co-ordinate axes of the curve		
	:\	$xy^2 + x^2y + 2xy - y + x + 2 = 0.$		
	i)	What is the radius of convergence of the power series $\sum_{n=0}^{\infty} \frac{(x-2)^n}{n!}$.		
210	j)	Find the value of $P_3(x)$ where P_3 is the Legendre polynomial.		
Part – B (Answer any four questions)				
Q3	a)	Solve $(D^2 + 2D - 35)y = 12e^{5x} + 37\sin 5x$ by using method of undetermined coefficients.	(8)	
210	b)	Find the general solution of the D.E $y'' - 2\sqrt{2}y' + 2y = 0$	(7)	
Q4	a)	Reduce to 1st order and solve the differential equation	(8)	
		$xy'' + 2y' + xy = 0$ where $y = \frac{\sin x}{x}$ is a solution.		
	b)	x	(7)	
	,	Using method of variation of parameter, solve the following differential	(- /	
210		equation $\frac{d^2y}{dx^2} + 9y = \sec 3x_{10}$ 210		
Q5	a)		(8)	
	,	Solve the differential equation $x^2 \frac{d^2y}{dx^2} - 2x \frac{dy}{dx} + 2y = 0$	` '	

where y(0)=1.5 and y'(0) = 1.

b)

Diagonalize the matrix $\begin{bmatrix} 3 & 5 & 3 \\ 0 & 4 & 6 \\ 0 & 0 & 1 \end{bmatrix}$.

Page **Z**

(7)

- **Q6 a)** Solve the following linear system of equations by Gauss elimination method $x_1 2x_{2+1} + 3x_3 = 0, -2x_1 + x_2 4x_3 = 3, 10x_2 + 5x_3 = 9, 6x_1 + x_{210} + x_2 = 0.$
 - Find a basis of eigen vectors of the matrix $\begin{bmatrix} 16 & 0 & 0 \\ 48 & -8 & 0 \\ 84 & -24 & 4 \end{bmatrix}$. (7)
- Q7 a) Define the rank of the matrix and find the rank of the following matrix $\begin{bmatrix}
 2 & 0 & 1 & 3 \\
 -2 & 4 & 6 & -3 \\
 1 & -4 & 1 & -5
 \end{bmatrix}.$ (8)
 - b) Find out what type of conic section is represented by the following quadratic form and transform it to principal axes $41x_1^2 24x_1x_2 + 34x_2^2 = 156$.
- **Q8** a) Find the radius of curvature of the curve $x^{2/3} + y^{2/3} = a^{2/3}$ at the point (0, a).
 - **b)** Find the asymptotes of the following curve $(x-y)^2 (x^2+y^2)-10(x-y)x^2+12y^2+2x+y=0$.
- **Q9** a) Prove that $(n+1)P_{n+1}(x) = (2n+1)xP_n(x) nP_{n-1}(x)$. (8)
 - Show that $J_{-1/2}(x) = \sqrt{\frac{2}{\pi^{\frac{2}{3}}}} \cos x$.

210 210 210 210 210 210 210