| Registration no: | | | | | | | | | | | | | | | | |---|----------------------|---|--------------------------|-----------------------|---------------------------|----------------------------|-----------------|---------------|--------------------|--------|--------|----------------|-----------|-------|----------| | Total Number of Pages: 2 210 210 210 | | | | | | | | 210 | B.TECH
PECI5415 | | | | | | | | 8 th Semester Regular / Back Examination 2015-16 PRESTRESSED CONCRETE BRANCH: Civil | | | | | | | | | | | | | | | | | Time: 3 Hours 210 Max Marks: 70 210 210 | | | | | | | | | | 210 | | | | | | | Q.CODE: W372 Answer Question No.1 which is compulsory and any five from the rest. The figures in the right hand margin indicate marks. Use of IS Code, IS1343 is allowed. | | | | | | | | | | | | | | | | | Q1 | a) | Answer the Distinguish | | _ | | | | 210
d post | t tensi | oning | 210 | | | 210 | (2 x 10) | | | b) | State the va | rious | types | of hi | gh tei | nsile s | steel u | ised f | or pre | stres | sing. | | | | | 210 | c) | Write Moh
stressed cor | | | | ed for | findi | ng th | e defl | ectio | n at a | • - | oint of a | pre | | | | d) | | | | | | | | | | | | | | | | | e) | member? Explain. Write the formula to find the loss due to anchorage slip in a pre stressed concrete member. | | | | | | | | | | | | | | | | f) | Draw separ
pre stressing | _ | gures | | xplai | n betv | | axial _] | prestr | | | eccentr | | | | 210 | g)
h)
i)
j) | Distinguish What do yo Explain the Differentiat continuous | u mea
e con
e bety | an by
cept
ween | effect
of loo
prima | tive re
ad ba
ary me | einfor
Nanci | cemei
ing. | nt rat | io? W | hat is | k.
s its ir | - | ce? | | | Q2
Q2 | a) | For a pre st a parabolic of <i>e</i> at centre | tendo | n pro | ofile v | vith z | ero e | value | e at er | nds ar | nd wi | th an | eccentr | icity | (5) | | 210 | b) | Calculate the applied with eccentricity axis at centri | h a pr
valu | estre | ssing | force | , P t | hroug | ha t | riang | ular | tendo | n with | zero | (5) | | Q3
210 | | A simply supported rectangular concrete beam , 120 mm wide and 250 mm deep is having a span length of 8 m carrying a live load of 15 kN/m in addition to its dead load. It carries an effective prestressing force of 250 kN through a horizontal tendon located at an eccentricity of 50 mm below the neutral axis. Calculate the resultant stresses at extreme fibres and draw the stress distribution diagram at a section, 6 m from left end. | (10) | |-----------|----------------|---|---------| | Q4
210 | | The end section of a prestressed concrete beam of size 140 mm by 300 mm supports an ultimate shear force of 180 kN. The compressive prestress at the centroidal axis is 4 N/sq mm. Assuming the cover to tension reinforcement as 40° mm, f_y value of stirrups as 415° N/sq mm, design suitable shear reinforcements in the section as per IS Code provision. Use M40 grade of concrete. | (10) | | Q5 | | A pre stressed concrete beam of rectangular section, 150 mm wide and 300 mm deep is to be designed to support a uniformly distributed load of 10 kN/m in addition to a concentrated load of 30 kN at centre of span of a beam of length 12 m. If there is no tensile stress in the concrete at any stage, calculate the minimum prestressing force and the corresponding eccentricity. | (10) | | Q6 | | A pre tensioned beam 150 mm x 300 mm is prestressed by 8 wires each of 5 mm diameter initially stressed upto 1400 N/sq mm. with their centroids located 80 mm above the soffit. Find the total percentage loss of stress due to elastic deformation, creep and shrinkage of concrete. Es = 210 kN/sq mm, Ec = 35 kN/sq mm. Creep coeff= 1.5. Residual shrinkage strain = 0.0003. | (10) | | Q7 | | A pre stressed concrete beam of span 10 m with rectangular section, 150 mm wide and 300 mm deep is prestressed by a parabolic cable profile carrying an effective force of 250 kN with zero eccentricity at ends and e = 50 mm below the neutral axis at centre of span. If there is a udl of 12 kN/m including the dead load of the beam, find the final deflection under pre stress, self weight, live load and creep. The creep coeff. = 1.5 | (10) | | Q8 | a) | Write short notes on any two: Moment of resistance of a rectangular pre stressed concrete beam | (5 x 2) | | | b)
c)
d) | Cracking load and cracking moment Creep and shrinkage of PSC members Stress distribution in an end block with single anchor plate | |