Total number of printed pages - 02

B.TECH PECE5406

8th Semester Regular / Back Examination 2015-16 MODERN SEPARATION TECHNIQUES

BRANCH : Chemical Time : 3 Hours

Max Marks: 70

Question Code: W250

Answer Question No. 1 which is compulsory and any FIVE from the rest.
The figures in the right-hand margin indicate marks.
Assume suitable notations and any missing data wherever necessary.
Answer all parts of a question at a place.

1.	Answer the following questions :						
	(a)	Name a membrane process in which phase change takes place.					
	(b)						

- (c) For which type of Reverse Osmosis membrane, Reflection coefficient is zero.
- (d) What a is the basic difference in transport mechanism of a charged and uncharged molecule in nano-filtration?
- **(e)** How does the swelling of a membrane affect diffusion of molecules through it?
- **(f)** What are the major difference between a tortuous pore and capillary pore membrane?
- **(g)** What is the principal driving force of diffusion dialysis?
- (h) In which state of polymer, more sorption of gas takes place?
- (i) What is meant by Donnanexclusion?
- (j) What is the MWCO value of nano-filtration membranes?
- 2. (a) Write the principle and industrial applications of microfiltration.(b) Briefly discuss about the membranes used for Ultrafiltration.05
- An Ovalbumin solution having molecular weight of 500 dalton & concentration of 1 mass% is passed through a tubular UF membrane module of 1cm internal dia. and 100cm long at a temp. of 25°C. Membrane water permeability is 85.85×10^{-3} m³/m² (day)(psi). Rejection coefficient is 0.995, applied pressure difference 2 bar, solute diffusivity 8×10^{-11} m²/s; viscosity of solute 3 cP; gel point concentration of solute (C_g) 10.5%. Calculate the flow velocity to be maintained in the tube in order to prevent formation of a gel layer on the membrane surface.

210	210	(a) (b)	industrial applications of membrane process. Explain in details about the membrane types and module configurations of membrane processes.	05 05	210
	5.	(a) (b)	Discuss in details the factors affecting the performance of NF membrane. Discuss about the process limitation and industrial application of NF.	05 05	
210	210	(a) (b)	Discuss in details about the fouling in microfiltration membrane. Discuss in details the factor affecting pervaporation.	05 05	210
210	7.	(a) (b)	Briefly discuss about the advantages, disadvantages, and industrial applications of diffusion dialysis. Discuss about the principle, membrane materials, and industrial applications of gas separation.	05 05	210
	8.	(a) (b) (c) (d)	Write short notes on any TWO : Kedem-Katchalsky Model Hemodialysis Knudsen Diffusion Phase Inversion Process	5 x 2	
210	210		210 210	210	210