M.TECH

Registration No:						

Total Number of Pages : 02

M.TECH 1ST SEMESTER REGULAR EXAMINATIONS, DECEMBER 2017 SMART ELECTRICAL ENERGY SYSTEM Branch: PE, Subject Code:MPEPC1010 Time: 3 Hours Max Marks : 70

The figures in the right hand margin indicate marks.

PART-A

(10X 2=20 MARKS)

1. Answer the following questions.

- a. Draw the power speed and torque speed characteristics of wind turbines
- b. What will be the power generation in a 100kW wind turbine?
- c. How reactive power can be compensated in wind energy system
- d. Calculate the fill factor for a solar cell which has the following parameters:

 V_{oc} =0.24 V, I_{sc} =-9 mA, V_{max} =0.14 V, I_{max} =-3 mA

- e. How photovoltaic (PV) modules are rated and what is the efficiency of commercial solar cell?
- f. A generating station has connected load of 450 MW and a maximum demand of 250 MW, units generated being $615*10^6$ per annum. Calculate the demand factor and load factor
- g. What are the operating modes of DG
- h. What are the types of converters used for Wind energy systems
- i. Difference between smart grid and micro-grid.
- j. What are major functions of Smart Grid

PART-B

(5 X 10=50 MARKS)

Answer any five questions from the following.

- 2.a. For an 8 blade wind turbine, calculate the angular speed of the rotor to **lift** water from 6-m depth if the radius of the turbine rotor is 1m and the wind speed is 10 m/s. Assume λ =1
 - b. A HAWT has the following data:

Speed of wind = 10 m/s at 1 atm and 15^{0}C Diameter of rotor = 120 mSpeed of rotor = 40 rpmCalculate the maximum possible torque produced at the shaft

3. a. Explain with a neat diagram the working of various types of wind generators b. Explain the role of charge controller in PV system

- 4. a. Explain how Smart Appliances can be the part of Smart Grid.b. What is grid interfacing and how can the grid connection be made possible
- 5. a. Why solar collector are used. Write and explain the various characteristics of solar collector
 - b. Show that a wavelength of $\lambda = 1 \mu m$ solar radiation corresponds to an energy of 1.24 eV. Give all assumptions made
- 6. a. State and explain various DG technologies
 - b. Discuss in brief about Distribution automation and control
- 7. a. Draw and explain the block diagram of Static VAR generator employing an inverter b. Explain the fixed speed system of wind system with Squirrel Cage Induction Generator
- 8. a. Explain the solar Collector Characteristics;b. Explain the application of solar energy to space heating

==0==