Total Number of Pages : 02 M.TECH

M.TECH 1ST SEMESTER REGULAR EXAMINATIONS, DECEMBER 2017 RF SOLID STATE DEVICES

Branch: EC, Subject Code:MECPE1042

Time: 3 Hours
Max Marks: 70

The figures in the right hand margin indicate marks.

PART-A

(2X10=20 MARKS)

1. Answer the following questions.

- a. A certain Gas MESFET has channel height= $0.1\mu m$, electron concentration= $8 \times 10^{17}/cm^3$, Relative dielectric constant= 13.10, Calculate the pinch-off voltage.
- b. Which factors limit the operation of low frequency transistors in GHz region?
- c. Draw the energy band diagram of a reverse biased p-i-n photo detector under illuminated condition.
- d. Draw the practical circuit of LED. How do we protect LED against reverse voltage?
- e. List the uses of solar cells.
- f. Differentiate conductors, semiconductors and insulators on the basis of band gap.
- g. Which MOSFET is called as Normally ON MOSFET and NORMALLY OFF MOSFET? Why?
- h. Will a transistor result if two diodes are connected back to back? Justify
- i. Differentiate between microwave transistors and transferred electron device.
- j. What is the operating life a silicon photodiode?

PART-B

(5 X 10=50 MARKS)

5

5

Answer any five questions from the following.

- 2. Consider a pn-junction formed from uniformly (constant) doped p- and n-type semiconductor regions. Assume one dimension.
 - a. Derive expression for the minority carrier currents on each side of the junction.
 - b. Sketch the hole, electron and total currents which flow through the device for forward and reverse biases.
- 3. a. Using Ebers-Moll Model, derive the expression for collector-emitter saturation voltage of a bipolar transistor.
 - b. Calculate the collector- emitter saturation voltage of a bipolar transistor at T=300K. Assume that , $\alpha_F = 0.99$, $\alpha_R = 0.20$, $I_c=1$ mA, $I_B = 50$ µA.

4.	a. Describe the characteristics and operation mechanism of microwave.	8
	b. Why FETs are preferred to bipolar transistors for low-noise applications?	2
5.	a. Derive the expression for cut off frequency and maximum oscillation frequency.	6
	b. What is MESFET? What are the advantages of MESFET?	4
6.	a. Define pinch off voltage. Derive the mathematical formula for the same.	7
	b. What are the applications and different areas in which microwave bipolar transistor is	3
	implemented?	
7.	a. Describe the hybrid π equivalent model of CE configuration for small signal analysis.	8
	b. What do you mean by transition probability in optical devices?	2
8.	a. Describe the operation and application of MOSFET.	5
	b. Derive the expression for transistor cut-off frequency.	5