Registration No:						
						1

Total Number of Pages : 02 B.TECH 1ST SEMESTER REGULAR EXAMINATIONS, DECEMBER 2017 ENGINEERING PHYSICS Subject Code:BBSBS1021 Time: 3 Hours

Max Marks : 100

The figures in the right hand margin indicate marks.

<u>PART-A</u>

(10X1 = 10 MARKS)

Answer all questions.

- a. A particle executes SHM with amplitude 4cm. The displacement from the mean where the particle will pass half PE and half KE is _____?
- b. The damping coefficient of an oscillator is 0.88 /sec. and the frequency is 512 hz. The Q-factor of the oscillator is _____?
- c. In case of Newton's ring experiment the rings are produced by division of _____?
- d. The working principle of optical fiber is _____?
- e. _____ + ____= Crystal structure.
- f. An ice cube is not a crystal because____
- g. The relation between magnetic relative permeability and magnetic susceptibility is _____.
- h. Divergence of a vector field is a _____?
- i. Write the expression for the De Broglie's wavelength for an electron moving under a electric potential?
- j. Write the time independent Schrodinger equation for a free particle of mass 'm' moving along z-axis.

<u>PART-B</u>

(15 x 2 = 30 MARKS)

Answer any fifteen questions from the following.

- 1. Show that the displacement verses velocity graph for a simple harmonic oscillator is an ellipse.
- 2. A wave function is represented by: $Y(x,t)= 12 \sin (8\pi t-0.5x)$, where x is in cm. Find amplitude, frequency, wave velocity and wavelength.
- 3. Write the conditions of interference.
- 4. Differentiate between Fresnel and Fraunhofer Diffraction.
- 5. There are 44 number of fringes are visible in the field of view of the microscope when a light of wavelength of $\lambda = 6000A^0$ is used. If the light is replaced by $\lambda = 4500A^0$, then how many number of fringes will be visible in a Bi-prism Experiment?
- 6. The principal focal length of a Zone is 12cm. For wavelength 4000A⁰. The area of the zones are _____?
- 7. Explain lattice translational vector with the help of diagram?
- 8. The lattice constant of a cubic lattice is 'a' $=2A^{0}$. Calculate the spacing between {1 2 0}.
- 9. write the properties of Dielectric materials?
- 10. What is Curie temperature?
- 11. What is Meissner's effect?
- 12. Magnetic monopole does not exist, justify using appropriate law ?
- 13. Find the Gradient of scalar field S, where $S = x^2 + y^2 + z^2 9$

B.TECH

- 14. State Gauss law in electrostatics and obtain its differential form.
- 15. Show graphically the variation of stopping potential with frequency of incident light in photoelectric effect..
- 16. Write the Schrodinger time independent equation for a body of mass 'm'moving freely in the ZX plane.
- 17. Calculate the de Broglie wavelength of a neutron whose kinetic energy is 0.025ev.
- 18. If the uncertainty in position of an electron is 4×10^{-10} m, calculate the uncertainty in its momentum.
- 19. Define CNT and its classifications.
- 20. Write the characteristics of a wave function in quantum mechanics.

<u>PART-C</u>

(6 x 5 = 30 MARKS)

Section-i

Answer any Six questions

- 1. A damped oscillator reduces its amplitude to 1/10 of the original after making 20 number of oscillations. If the time period of the oscillator is 2 sec. then find the relaxation time of the oscillator.
- 2. Differentiate between " coherent" & "incoherent "superposition.
- 3. Differentiate between Zone plate and Convex lens.
- 4. A superconductivity sample has critical fields at 1.2×10^5 A/m and 3.8×10^5 A/m for temperature 2 K and 12 K respectively. Calculate the transitional temperature and critical field at 0 K and 3.2K
- 5. Evaluate divergence and curl of A at (1,2,3), where $A = 2\hat{i} xy + 4\hat{j} yz + 5\hat{k} zx$
- 6. State Faraday's law of electromagnetic induction and mention its differential form
- 7. State Heisenberg's uncertainty relation. The uncertainty in velocity of an electron is 7.3 $\times 10^5$ m/s. Find the uncertainty in its position.
- 8. Discuss the properties and applications of CNT. Write two application of nano particles.

Section-ii

Answer any Two questions

(2 x 15 = 30 MARKS)

- 1. a. Set up the differential equations for a damped harmonic oscillator. Find the solution for the under damped oscillation. Discuss the three types of damped motion with examples?
 - b. Discuss with a neat diagram that how interference fringes are produced in Bi-prism Experiment.
- 2. a. What is an optical fiber? Discuss different parts of an optical fiber? Differentiate between the step- index and graded-index optical fibers ? Discuss its applications and advantages?
 - b. Derive Bragg's for crystal diffraction? Find the lattice parameter of a cubic crystal which produces 1st order X-ray diffraction from a plane (111) with wavelength 2.5 A^0 and angle of diffraction 30⁰.
- 3. Write all the Maxwell's equations in differential as well as integral form and state the fundamental laws from which they are derived ?Distinguish between conduction current and displacement current.
- 4.a. Define Uncertainty principle ?Using it prove the Non-existence of electron in Nucleus?
 - b. State and write Poynting theorem and justify that it explains about the conservation of electromagnetic energy?