Total Number of Pages: 02

M.TECH MDPE205

Second Semester Examination 2013 FINITE ELEMENT METHODS IN ENGINEERING

Time: 3 Hours Max marks: 70

Answer Question No.1 which is compulsory and any five from the rest.

The figures in the right hand margin indicate marks.

1. Answer all Questions

2x10

- a. What is meant by Finite Element Analysis?
- b. What are the various steps in Finite Element Analysis?
- c. Briefly describe about various types of elements used in FEM?
- d. What is a iso-parametric element? Give example.
- e. What is the importance of Pascal triangle?
- f. What is weighted residual method?
- g. Write down the shape function matrix for a 2D truss element..
- h. What is Rayleigh-Ritz method?
- i. What is meant by post processing in FEA?
- j. What are the advantages of Finite Element Method.
- 2. For the spring assemblage with arbitrarily numbered nodes shown in figure 1. Find (a) the global stiffness matrix, (b) the displacement of nodes 3 and 4 (c) the forces in each spring. A force of 5 kN is applied at node 4 in x direction. The spring constants k₁=1 kN, k₂= 2 kN, and k₃=3 kN. Nodes 1 and 2 are fixed.

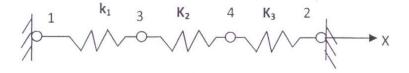
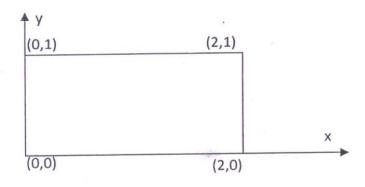



Figure 1

- 3. Derive the expression of transformation matrix and stiffness matrix for a bar in Three-Dimensional space.
- 4. The coordinate of a triangular element are given by (0,0), (3,0) and (1.5,4) mm respectively. Evaluate the shape function at a interior point P (2,2.5) mm for the element. Assuming plane stress condition, find the stiffness matrix for the element. Assume young's modulus $E=2x10^5$ N/mm², poission ratio v=0.3, thickness =10mm. 10

5. A four noded rectangular element as shown in figure below. Evaluate the shape function at a interior point P (1,0.5). Also determine the (i) Jacobian matrix, and (ii) Strain displacement matrix for this element.

TRALLI

Take $E=2x10^5 \text{ N/mm}^2$, poission ratio v=0.25. Assume plane stress condition.

10

6. For the one dimensional bar fixed at both ends and subjected to a uniform temperature rise T=50 °C, determine the reactions at the fixed ends and axial stress in the bar.

Let E=200 GPa, A= 4 m², L = 4 m, and α =0.57/K.

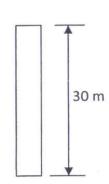


Figure 3

7. From basics derive the shape functions and strain-displacement matrix for axisymmetric element with constant strain triangular elements.

10

8. Write on (any two);

5x2

- (a) Briefly describe about Variational Approach.
- (b) Potential energy method.
- (c) Transverse vibration formulation in FEM.
- (d) Heat conduction formulation in FEM.