Reg	gistr	ation No:	
Tota	al Ni	umber of Pages: 2	M.TECH MDPE105
Α	ınsv	1st Semester Regular/Back Examination – 2014 NUMERICAL ANALYSIS BRANCH(S): MACHINE DESIGN Time: 3 Hours Max Marks: 70 wer Question No.1 which is compulsory and any five from the figures in the right hand margin indicate marks.	e rest.
Q1	a) b) c) d) e) f) g) h) i)	Answer the following questions: Explain accelerating convergence. Estimate truncation error using Taylor series. W hat is the condition of convergence of fixed point iteration to solve a system of non-linear equation? What is the condition of convergence of Gauss-Seidel method? What do you mean by peicewise interpolation? Define cubic spline. Write the stability condition for implicit method to solve differential equation. Define eigen value and eigen vector of a matrix. Write the advantages of implicit method over explicit method. Explain multistep method giving suitable example.	(2 x 10)
Q2	a)	Find the root of equation $e^{-x} - x = 0$ using fixed iteration method when the approximate error is less than 0.005%.	(5)
	b)	Find the positive root of the equation $e^{x} = 1 + x + \frac{x^2}{2} + \frac{x^4}{6}e^{0.3x}$ correct to two decimal places	(5)
Q3	a)	Solve the following system of non-linear equation using fixed –point iteration method, $x^2 + y = 11$, $y^2 + x = 7$.	(5)
	b)	Solve the following system of equations using Gauss-Seidel method, $-3 x + y + 12z = 50$ $6 x - 3y - z = 3$ $6 x + 9 y + z = 30$	(5)

(5)

b)	Obtain the	e cub	ic splin	e app	roximat	ion for	the function defined by the data	(5)
		X	0	1	2	3		
		У	1	2	33	40		

Q5 a) Find f'(x), f''(x), f''(x) at x=3 of the following data values (5)

x	0	1	2	3	4	5
f(x)	3	5	8	10	13	16

- b) Using Gauss Quardature techinque, evaluate $I = \int_0^1 \frac{\sin x}{5x} dx$ taking h= (5) 0.25.
- Solve the I.V.P $\frac{dy}{dx} = -xy^2$ y(2)=1 using Runge –Kutta 4th order Method in the interval [2,2.6].
 - b) Given the differential equation y' = x + siny with y(0) = 1, show that it is sufficient to use Euler's method with the step h = 0.2 to compute y(0.2) with an error less than 0.05

Q7 a) Find the Fourier approximating polynomial of the following data (5)

п/2 п

		^	0	111/2	11	0111/2					
	170	AV ,	0	1/4	1/2	3/4	1				
b)	CERT	-	138					3	2	5]	(5)
	Find the e	igen v	value	of the fo	ollowin	x A=	6 -5 3	3			
	1							- 24	38	2	
	1 0		1 14 1					-		+0	

3π/2 2π

using basic power method.

- Q8 a) What do you mean by elliptic equation? Find the portion in xy-plane where the following equation becomes elliptic $u_{xx} + 4u_{xy} + (x^2 + 4y^2)u_{yy} = \sin(xy)$ (5)
 - b) Derive the Crank-Nicolson finite difference scheme for solving partial differential equation $u_t a^2 u_{xx} = 0$, 0 < x < 1, t > 0, u(0,t) = 0, t > 0 and u(x,0) = f(x), $0 \le x \le 1$