Registr	ration No:					00	6	
Total Number of Pages: 1								M.TECH
CMPE10								
1st Semester Regular/Back Examination – 2014								
FINITE ELEMENT ANALYSIS								
BRANCH(S): CAD / CAM ENGINEERING								
Time: 3 Hours Max Marks: 70								
Answer Question No.1 which is compulsory and any five from the rest. The figures in the right hand margin indicate marks.								
Q1	Answer the following questions: (2x10)							
(a)	a) What are the various steps in finite element analysis.							
6)	b) Distinguish between FDM AND FEA. Write down the advantages and disadvantages of FEM.							
Write down the advantages and disadvantages of FEM. Find out the natural frequency of a fixed free bar with one element discretization.								
العب What is a isoparametric element? Give example.								
Find out the natural frequency of a fixed free beam with one element discretization.								
Of Define shape function.								
Give two examples of plane strain problems. What are the necessary conditions for a problem to be axisymmetric?								
What is the importance of Pascal's triangle in FE analysis?								
Q2	Derive the shape function, strain displacement relation matrix [B] and element stiffness matrix for a (10)							
	3-noded triangular element. (CST)							
Q3	A furnace wall consists of three layers. The inner layer is fire brick of thickness 13.5 cm, middle (10)							
	cm, outer layer is red brick having thickness layer insulating brick of thickness cm. Furnace temp							
	is 870 °C and the outside wall temp is 40 °C. Find the heat loss and interface temp. The wall measured 5m × 2m. For fire brick $K_1 = 1.2$ w/m °C, For insulating brick $K_2 = 0.14$ w/m °C and for							
	red brick $K_3 = 0.85$ w/m $^{\circ}$ C. Solve by using finite element method.							
Q4 a)	Consider a simple supported beam, load acting at its mid point. Find out maximum deflection and slope at the supports. Solve by using finite element method.							(5)
b)	Derive the shape function and stiffness matrix of a typical quadrilateral element as shown in the							(5)
S: K	figure.			0,b)			3 (2a,b)	(0)
			- 1	,,,,			7	
						,		
			1	(0,0)		10	a,O)	
							2,07	
Q5 Derive the expression of mass matrix and stiffness matrix for transverse vibration of beam (10)								
45	Derive the expression of mass matrix and stiffness matrix for transverse vibration of beam. (10)							(10)
Q6	The coordinates of	of a triangular e	element are	given	by (5.5), (7	.6) and (6.8)	mm respectively.	(10)
_	Evaluate the shape function at a interior point P(5.5,5.5) mm for the element. Assuming plane							
	strain condition find the stiffness matrix for the element. Assume Young's modulus E = 200GPa, Poisson ratio = 0.25, thickness = 15mm.							
	Poisson ratio = 0.2	5, thickness = 1	5mm.					
Q7	Q7 Establish the relationship between [Ke], [B], [D] and Ve for a three dimensional tetrahedron, where [Ke] is the element stiffness matrix, [B] is strain displacement matrix, [D] is elasticity matrix and Ve							
	is the volume of ele	ement.					*	N.
Q8	Find out the Jacobian matrix and strain displacement matrix for the isoparametric element.							(5x2)
			(0,40)				(30.40)	
			(2).0)				(30,40)	
			(0,10)				(20.0)	
			(0,10)				(30,0)	