Regi	stra	ition No:		
Total Number of Pages: 1 M.TEC				
ETPE1			PE105	
		1st Semester Regular/Back Examination - 2014		
	FIBRE OPTICS COMPONENTS & DEVICES			
BRANCH(S): COMMUNICATION ENGINEERING, COMMUNICATION				
SYSTEMS, ELECTRONICS & COMMUNICATIONS ENGINEERING, ELECTRONICS &				
		TELE COMMUNICATION ENGINEERING		
		Time: 3 Hours		
		Max Marks: 70		
		Answer Question No.1 which is compulsory and any five from the rest.		
		The figures in the right hand margin indicate marks.		
Q1		Answer the following questions:	(2×10)	
	a)	Why is singlemode fiber less costly than multimode fiber?	(En loy	
	b)	A photodiode has a capacitance of 10 pF.Calculate the maximum load resistance which allows 10		
		MHz post detection bandwidth.		
	c)	Why do you need to clean fiber optic connectors?		
	d)	Write the expression for angular misalignment and explain the term?		
	e) f)	Draw the equivalent circuit for digital optical fiber receiver including the various noise sources. Define fiber splicing.		
		Compare p-n Photodiode with p-i-n Photodiode.		
	g) h)	The Fresnel reflection at a butt joint with an air gap in a multimode step index fiber is 0.49 dB. Find		
	.,	the refractive index of the core.		
	i)	Define Meridional ray and skew ray.		
	1)	What is Population inversion and Optical pumping?	465	
Q2	a)	How are the following elements constructed? Explain their role in WDM networks.	(5)	
		(i) Multilayer dielectric thin-film filters. (ii) Mach-Zehnder interferometers.		
	b)	With the help of a block diagram explain the operational principles of WDM.	(5)	
Q3	a)	Explain the mechanism of intermodal dispersion in a multimode step index filter.	(5)	
	b)	A pin photo diode on everage generates one electron hole pair per incident photons at a	(5)	
		wavelength of 0.8 μm. Assuming all the electrons are collected		
		Calculate		
		(i) the quantum efficiency of the device. (ii) its maximum possible band gap energy.		
		(iii) the mean output photo current when the received optical power is 10" W.		
Q4	a)	Explain with the necessity diagram the different types of fiber structures.	(5)	
	b)	An InGaAs pin photodiode has the following parameters at a wavelength of 1600 nm: ID = 5 nA,	(5)	
		η =0.9, $R_{\rm t}$ = 2k Ω and the surface leakage current is negligible. The incident optical power is 300 nW		
		and the receiver bandwidth is 20 MHz. Find the various noise terms of the receiver.	(40)	
Q5 Q6	-1	Derive the expression for different noise sources in an optical receiver. What are the different types of optical fiber couplers and explain their working?	(10) (5)	
CO	a) b)	Explain the impact ionization and avalanche effect in the avalanche photodiodes (APD).	(5)	
Q7	a)	A silica optical filter with a core diameter large enough to be considered by ray theory analysis has	(5)	
₩,	/	a core refractive index of 1.6 and cladding refractive index of 1.46. Determine:	1-1	
		(i) The critical angle at the core cladding interface.		
		(ii) The numerical aperture for the fiber.		
		(iii) The acceptance angle in air for the fiber	(6)	
Q8	b)	Explain the different types of bending losses in optical fibers. Describe any TWO from the following	(5) (5+5)	
44.4		essense mil Title nem me memili	(4,4)	

Describe any TWO from the following Passive optical couplers Laser diode structures a)

b)

c) OTDM

Integrated Optics Fusion Splices d)

e)