Registration No:

Total Number of Pages: 2

M.TECH CSPE102

NTRAL LIA

· GUNU

1st Semester Regular/Back Examination – 2014 COMPUTATIONAL INTELLIGENCE

BRANCH(S): COMPUTER SCIENCE AND TECHNOLOGY, ELECTRONICS & TELE COMMUNICATION ENGINEERING, ELECTRONICS & COMMUNICATIONS ENGINEERING, COMPUTER SCIENCE AND ENGINEERING

Time: 3 Hours Max Marks: 70

Answer Question No.1 which is compulsory and any five from the rest.

The figures in the right hand margin indicate marks.

Q1 Answer the following questions:

(2x10)

- a) Define perceptron learning rule.
- b) Differentiate between soft computing and hard computing
- c) Why do we use a bias value in a neural network?
- d) Compare and contrast BAM and Hop field network.
- e) What is LR-type fuzzy numbers?
- f) Justify the following statement "Partial membership is allowed in fuzzy sets".
- g) Write a short note on lambda-cut for fuzzy sets.
- h) Differentiate between fuzzy-neural hybrid and fuzzy-genetic hybrid system.
- State generalized modus ponens and generalized modus tollens.
- j) What is the difference between crossover and mutation?
- Q2 a) Consider a multilayer feed forward back propagation neural net having (i) three inputs (x1= 0.1;x2=0.01, and x3=0.5) and uniform weights [W] of 0.45 for each input-hidden connectors, (ii) two hidden nodes, and (iii) one output node. The connector weights [V] between hidden and output nodes is 20% less than [W]. Assume linear transfer functions in the hidden and input layers and tan-sigmoidal function in the output layer, Target output is 1.0, and learning rate (a) = 0.75, update [W] and [V] values for one epoch.
 - b) What is ADALINE? Explain the training algorithm used in ADALINE (5) network.
- Q3 a) What is associative memory? Hence discuss the applications of (5) associative memory for recognition of characters.
 - b) Draw the architecture of auto-associative memory network. Explain the (5) testing algorithm adopted to test an auto-associative network.
- Q4 a) Define Defuzzification. State the necessity of defuzzification (5)
 Process. Discuss different methods of defuzzification.
 - b) Consider a set P={P1, P2, P3,P4} of four varieties of paddy plants, set D={D1,D2,D3,D4} of the various diseases affecting the plants and S={S1,S2,S3,S4} be the common symptoms of the diseases. Let R be a relation on P x D and S be a relation on D x S

	D1	D2	D3	D4
P1	0.0	0.5	0.2	8.0
P2	0.3	0.1	0.3	0.2
P3	0.5	0.0	0.4	0.0
P4	0.8	0.9	0.5	1.0

	S1	S2	S3	S4
D1	1.0	0.9	0.3	0.5
D2	0.9	0.8	0.1	0.8
D3	0.2	1.0	0.5	1.0
D4	0.8	1.0	0.6	1.0

Obtain the association of the plants with the different symptoms of the diseases using max-min composition.

- Q5 a) What is Fuzzy Inference System (FIS)? With suitable block diagram, explain the working principle of an FIS. Differentiate between Mamdani FIS and Sugeno FIS.
 - b) Derive the generalized delta rule. What is necessity of momentum factor in weight updating process?
- Q6 a) What is ANFIS? With a suitable block diagram explain its architecture and (5) working principle.
 - b) Explain the structure and characteristics of an electronic model of a biological neuron.
- Q7 a) Maximize the following function for one generation and infer its average (5) fitness compared to the previous generation as. f(x)=y=x²+2x, subject to 0.5<=x<=1.0 with the following initial solutions of population:
 - 1.11001110011
 - 2.10001111101
 - 3.10111100011
 - 4.10000001110
 - 5.10101000010
 - 6.11100000010

Consider single point crossovers at bit position '6' and 'nil' mutation.

- b) What do you understand by 'Tournament Selection' with reference to GA? (5) How does it overcome the demerits of roulette wheel selection?
- Q8 Write short notes on any two of the following:

(5 x 2)

(5)

(5)

- a) Hebbian learning
 - b) Inversion and deletion in GA
 - c) Fuzzy Inference Systems
 - d) Continuous BAM Vs Discrete BAM.