Regi	istra	ation No.:	
			M.TECH PEPE103
1st Semester Regular/Back Examination – 2014 OPTIMIZATION TECHNIQUE BRANCH(S): POWER ELECTRONICS, POWER ELECTRONICS & DRIVES Time: 3 Hours Max Marks: 70 Answer Question No.1 which is compulsory and any five from the rest. The figures in the right hand margin indicate marks.			
Q1	a) b) c) d) e) f) g) h) i)	and the second second leading conduction.	(2 x 10)
Q2	a)	Solve the following LPP by using Big-M method: Maximize $Z = 3x_1 - x_2$ Subject to $2x_1 + x_2 \le 2$ $x_1 + 3x_2 \ge 3$ $x_2 \le 4$ $x_1 , x_2 \ge 0$	(10)
Q3		Use dual simplex method to solve the following LPP Minimize $Z = 3x_1 + 2x_2$ Subject to $3x_1 + x_2 \ge 3$ $4x_1 + 3x_2 \ge 6$ $x_1 + x_2 \le 3$ $x_1, x_2 \ge 0$	(10)

- Solve the following LPP by using revised simplex method:

 Maximize $Z = 6x_1 2x_2 + 3x_3$ Subject to $2x_1 x_2 + 2x_3 \le 2$ $x_1 + 4x_2 \le 4$ $x_1, x_2, x_3 \ge 0$
- Q5 a) Consider $f = x_1^2 + 3x_2^2$, $x_1 = (1,2)^T$ Perform two iterations of the Fletcher-Reeves algorithm. (5)

(10)

- b) Given that $f(x) = x_1 x_2 + x_1 x_2 + 3 x_1^2 + x_2^2$ and $x_0 = (2,3)^T$ Determine the Newton's direction to minimize f at x_0 .
- Perform two iterations by using Karmaker's algorithm to Minimize $Z = 2x_1 + 2x_2 3x_3$ Subject to $-x_1 - 2x_2 + 3x_3 = 0$ $x_1 + x_2 + x_3 = 1$ $x_1, x_2, x_3 \ge 0$ (10)
- Consider the function $f=U_3$ where U is determined from K(x)U=F as $\begin{pmatrix} 5x_1 & -5x_1 & 0 \\ -5x_1 & 5x_1 + 10x_2 & -5x_3 \\ 0 & -5x_3 & 5x_3 \end{pmatrix} \begin{pmatrix} U_1 \\ U_2 \\ U_3 \end{pmatrix} = \begin{pmatrix} 20 \\ 0 \\ 15 \end{pmatrix}$ Given $x = \begin{bmatrix} 1.0 & 1.0 & 1.0 \end{bmatrix}^T$

Determine the gradient $\frac{\partial f}{\partial x}$ using (i) the direct method (ii) the adjoint method

Q8 Write the Box's complex method for constraints optimization problem. (10)