
Registration No:												•		
												M.TECH		
HTPC102/ TFPC10													2/ TFPC102	
1st Semester Regular/Back Examination – 2014 ADVANCED HEAT TRANSFER - I														
_														
	BRANCH(S): THERMAL POWER ENGINEERING, THERMAL ENGINEERING, HEAT POWER ENGINEERING, MECHANICAL													
		ERING (THE												
						me: 3			· mer	````			SINEERING	
						ax Ma				150	NTRA	4400		
		Answer Que											est.	
The figures in the right hand margin indigate marks.														
(2)														
Q1		Answer the	following	a aues	lions:					163		ムリ	(2 x 10)	
-	a)	Why ice has								10	GU	MP	(2 × 10)	
	b)	b) Write the difference between gray and black body.												
	C)	Write the difference between scattering and absorption of participating										3		
	ad N	medium and define extinction coefficient.												
	a)	Draw the temperature profile inside a slab having variable thermal conductivity.											il	
	e)										il			
	radiation system. f) Differentiate between diffusivity and thermal capacity of a lump										-			
										a lumped	Ė			
	a١	system.	an hawa	- allaa		a in inc			.					
	h)	 Explain green house effect pertaining to green house gases. Differentiate between Wein's displacement law and Plank's Law. 										w.		
	i)													
	j)	Define the o	ritical th	icknes	s of in	nsulai	tion v	vith a	neat	diag	ram.			
Q2	-	A rofringer	2000		I						A			
V4.6	a,	A refrigeran 10mm and	14mm r	especti	ın a : ivalv	coppi A 40	nom er bit	thick	ınner wall	and of the	Oute	r diamete	r (5)	
		on the pipe	to redu	ice he	at los	ses.	Esti	mate	the	heat	leaka	ae to the	h	
		refrigerant p	er mete	r lengt	h of p	oipe.	Calc	ulate	the a	mou	nt of	efrigeran	it	
		evaporated	per h	our fo	r lai	tent	heat	of	refrig	gerar	nt at	30 ⁰ C is	8	
		1500kJ/kg./												
		is 400W/m.	K and	0.03W	VMK.	The I	Interr objec	nal ar	nd ex	derna	al hea	it transfe	r	
	b)	Derive the										.	(5)	
	-,								,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				(0)	
Q3	a)	In a petrol	engine	the he	at di	ssipa	ted t	hroug	gh th	e pis	ton	crown is	- 1 - 1	
		about 3kW.	Estimate	e the	minin	num	crow	n thi	ckne	ss re	quire	d for a		
		aluminium piston is lim	piston(ki ited to 3	= 150V	//mr.)	he co	ne n	naxim Lteor	ium Secsi	temp	eratu - 50°	re or the	9	
		the formulae		.00 0	ario c	ne cc	JOIETT	t term	perat	ure i	8 50 .	. Denve	•	
	b)													
												-		
Q4	a)	A stainless of 300°C is	steel ro	d of ou	iter d	lame	ter 1	cm o	rigina	illy at	t a tei	mperature	9 (5)	
		convective	heet tre	ny imi Ingfer	coeff	ra II Icleoi	n all	iquid 50\A#	at 1 m²k	ZU"C Dete	, IOF	which the	9	
		required for	the ro	d to	each	a te	ampe	ratur	ııı ∩. e.of	100	C As	ane umi	B	
		density of	steel 78	300kg/	n ³ ,St	pecific	c he	at as	450)J/ka	K an	d therma	il	
		conductivity												

- b) Derive the formulae used to solve the above problem.
- Q5 Compute the temperature distribution T(x,y) for a rectangular plate of (10) unit thickness as shown

(5)

(5)

(5)

For $f(x) = T_0 \sin \frac{nx}{a}$ where T_0 is the constant temperature. Also determine the heat flux of the boundary surfaces.

- Q6 a) From the first principle derive the conduction equation for a spherical coordinate system.
 - Derive the radial heat transfer equation for a hollow sphere with constant temperature boundary and show the conductive resistance and mean area of heat flow
- Q7 Derive the Radiative Transfer Integro differential Equation for a (10) participating media.
- Q8 Explain the followings: (2.5 x 4)
 - a) Radiosity and Irradiation
 - b) Duhamel's superposition integral
 - c) Laplace transform of a transient one dimensional conduction heat transfer equation
 - d) Radiation shield