egistration No:											
Total	Nun	nber of	Page	a: 1				-			ECH
SY TELE	CC	BRAN MS,EL MMUN	INF ICH(S ECTF IICAT	ORM (): CO (ONIC (ON E	MMUI S & C NGINI	NICA OMN EERI Thich	ODING & TION ENG MUNICATI NG, SIGN Fime: 3 Ho Max Marks is compo	S CRY SINEER ONS EN AL PRO ours s: 70 alsory a	DESSING AN	2014 HY NICATION ,ELECTRONICS D COMMUNICAT	& FION
Q1	a)	Answer the following questions: What is the channel capacity of a binary symmetric channel with error probability 0.017. Relate the amount of information provided and probability of occurrence of events. Define the terms coding efficiency and redundancy. What is source coding? Define code length & code efficiency. Give the relation between them. What is conditional entropy? When the entropy function will have its maximum value? Define self information and information rate. Mention their units? Briefly explain the Shannon first theorem. What is trellis? What is code tree? Define syndrome polynomial? Give the properties of syndrome polynomial. Find the entropy of a discrete memory-less source with source alphabet Z=(A, B, C, D, E) with probability									
		P(A) = Po	= 1/4.	P(B) = P1 =	16	P(C) = 1	P ₂ = \frac{1}{16}	$P(D) = P_3 = \frac{1}{6}$	$P(E) = P_4 = \frac{1}{2}$	
Q2	a) b)										(5) (5)
Q3		Construct (7, 4) cyclic code for the message sequence (1 1 0 1) and the generator polynomial g(x) = 1+x+x ³ i) Using the algorithm and find the codeword ii) Find the generator matrix and parity check matrix									
Q4	a) b)	A discrete memory less source emits five symbols with probabilities $\{0.4, 0.1, 0.2, 0.1, 0.2\}$. Find Huffman code and its length by placing the combined symbol as high as possible. Calculate the channel capacity (C) of DMC when channel input probability $P(x_0) = P(x_1) = 0.5$									
Q5	a)	A voice- Grade channel of network has a band width of 2.4 kHz. Calculate									(5)
	b)	 i. Information capacity of the telephone channel for SNR of 20dB. ii. The minimum SNR required to support information through the telephone channel at the rate of 9.6 kb/s. Consider a primitive polynomial f(x) = x³+x+1 over GF(2) and construct Extention field GF(8). Find also minimal 									(5)
Q6	a)	polynomials. The diagram shown below shows the encoder for a code rate r = ½, constraint length 4, of a convolutional encoder. Determine the encoder output produced by the message sequence 101111 i. Construct the code tree for the coder. ii. Construct the trellis.									(10)
Q7	a)			(18) in incomotor						rix is as shown below.	(7)
		H4x15 =	1111 1111 1100 1010	1110 0001 1101 1011	0001 0100 1010 1110	000 100 010 001	and m = (00	10 1100	111)		
	b)	5000 전 1000 전 1									(3)
Q8	a) b) c) d)	Explair Data e Asymn	Write Short Notes (Any Two) Explain the Ungerboeck Partitioning scheme and the trellis structure in TCM code formation. Data encryption standard (DES). Asymmetric-key cryptography. Describe the operation of JPEG decoding stage with a block diagram								