Registration no:

Total Number of Pages: 02

M.TECH CSPE209

2nd Semester MTech Regular/Back Examination – 2014-15 PATTERN RECOGNITION BRANCH(S): CSE

Time: 3 Hours Max marks: 70 Q.CODE: T411

Answer Question No.1 which is compulsory and any five from the rest. The figures in the right hand margin indicate marks.

Q1 Answer the following questions:

 (2×10)

- a) What do you mean by Cluster validation?
- b) What is meant by a pseudoinverse? How is it used in MSE?
- c) Distinguish between supervised and unsupervised learning.
- d) Define Delta Rule.
- e) Distinguish between Top down and Bottom up parsing techniques.
- f) What is the significance of activation function in Back Propagation Algorithm?
- g) What is meant by the likelihood ratio?
- h) Explain Design Principles of Pattern Recognition System.
- i) Distinguish between Parametric and Non-parametric pattern recognition methods.
- j) What is stochastic grammar? Explain with an example.
- Q2 a) Obtain an expression for Linear Discriminate functions for

(5)

(5)

- (i) Two category case (ii) Multi Category Case.
- b) Explain the Parzen Window approaches for Density Estimation.
- Q3 a) Explain the concept of feature extraction in pattern recognition system (5) with examples.
 - b) Consider a hierarchical clustering procedure in which clusters are merged so as to produce the smallest increase in the sum-of-squared error at each step. If the *i* th cluster contains n_i samples with sample mean m_i, show that the smallest increase results from merging the pair of clusters for which

$$\frac{n_i n_j}{n_i + n_j} \left\| m_i - m_j \right\|^2$$

is minimum.

Q4 a) Show that if our model is poor, the maximum-likelihood classifier we derive is not the best-even among our (poor) model set- by exploring

the following example:-

Suppose we have two equally probable categories (i.e., $P(\omega_1)=P(\omega_2)=0.5$). Furthermore, we know that $p(x|\omega_1)\sim N(0,1)$ but assume that $p(x|\omega_2)\sim N(\mu,1)$. (That is, the parameter θ we seek by maximum-likelihood techniques is the mean of the second distribution). Imagine, however, that the *true* underlying distribution is $p(x|\omega_2)\sim N(1,10^6)$.

- I. What is the maximum-likelihood estimate $\stackrel{\hat{}}{\mu}$ in our poor model, given a large amount of data?
- II. What is the decision boundary arising from this maximum-likelihood estimate in the poor model?
- b) Show that if the activation function of hidden units is linear, a three-layer network is equivalent to a two-layer one. Use your result to explain why a three-layer network with linear hidden units cannot solve a nonlinearly separable problem such as XOR or d-bit parity.
- Q5 a) Explain the nearest neighbour approach for multicategory classification. (5) Give suitable example.
 - b) State the Bayes Rule and explain how it is applied to pattern (5) classification problems. Show that in a multiclass classification task the Bayes decision rule minimizes the error probability.
- Q6 a) Consider a grammar with A={a,b,c}, S=S, I={A,B}, and $P = \begin{cases} S \rightarrow aSBA \text{ OR } aBA & AB \rightarrow BA \\ bB \rightarrow bb & bA \rightarrow bc \\ cA \rightarrow cc & aB \rightarrow ab \end{cases}$ (5)

Prove that this grammar generates the language $L(G)=\{a^nb^nc^n \mid n\geq 1\}$.

b) Briefly explain about grammatical inference with suitable example. (5)

(5)

(5)

 (5×2)

- Q7 a) Briefly explain about Ho-Kashyap procedures.
 - b) Consider a d-n_H -c network trained with n patterns for m_e epochs.
 i) What is the space complexity in this problem? (Consider both the storage of network parameter as well as patterns but not the program itself).
 - ii) Suppose the network is trained stochastic mode. What is the time complexity?
 - iii) Suppose the network is trained in batch mode. What is the time complexity?
- Q8 Write short notes on any two of the following
 - a) Hopfield Network
 - b) Valiant's framework
 - c) K-means clustering
 - d) Pattern associators