Registration no:										
------------------	--	--	--	--	--	--	--	--	--	--

Total Number of Pages: 02

M.TECH

PEPE103

1st Sem M Tech Regular/ Back Examination – 2015-16

OPTIMIZATION TECHNIQUE

BRANCH(S): PE/PED/ Time: 3 Hours Max marks: 70

Q.CODE:T913

Answer Question No.1 which is compulsory and any five from the rest.

The figures in the right hand margin indicate marks.

Q1 Answer the following questions:

(2 x 10

- a) What is the difference between a bound point and a free point in the design space?
- b) Define a stochastic programming problem and give two practical examples.
- c) What is duality?
- d) Can an artificial variable be in the basis at the optimum point of an LP problem?
- e) What is a Unimodal function? Give an example.
- f) What is the difference between Direct Search Methods and Descent Methods in Unconstrained optimization problem?
- g) Why is a conjugate directions method preferred in solving a general nonlinear problem?
- h) The univariate method is a conjugate directions method. True or false, justify
- i) Why are the components numbered in reverse order in dynamic programming?
- i) How can you solve an integer nonlinear programming problem?

Q2 a) Minimize
$$f(Y) = \frac{1}{2}(y_1^2 + y_2^2 + y_3^2 + y_4^2)$$
 subjected to
$$g_1(Y) = y_1 + 2y_2 + 3y_3 + 5y_4 - 10 = 0$$
 (10)

$$g_2(Y) = y_1 + 2y_2 + 5y_3 + 6y_4 - 15 = 0$$

Q3 Minimize $f = 2x_1 + 3x_2 + 2x_3 - x_4 + x_5$ Subject to the constraints: (10)

$$3x_1 - 3x_2 + 4x_3 + 2x_4 - x_5 = 0$$

$$x_1 + x_2 + x_3 + 3x_4 + x_5 = 2$$

$$x_i \ge 0$$
 $i = 1 to 5$

Using 2-step simplex method.

Q4 Minimize $f(x_1, x_2) = x_1 - x_2 + 2x_1^2 + 2x_1x_2 + x_2^2$ from the starting point $X_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ using (10)

powell's method.

- Perform two iterations of Newton's method to minimize the function $f(x_1, x_2) = (10)$ $(x_1 x_2^2)^2 + (1 x_1)^2$ from starting point $\begin{bmatrix} -1.2 \\ 1.0 \end{bmatrix}$
- Q6 Perform two iterations of the Fletcher-Reeves method to minimize the function given (10) in Problem below:

$$f(x_1, x_2) = (x_2 - x_1^2)^2 + (1 - x_1)^2$$

from the stated starting point $\begin{bmatrix} -1.2\\1.0 \end{bmatrix}$

a) What is karmakar's algorithm? Write down it use in power system (5)

(5)

- b) Write down the algorithm of finding the dual affine.
- Q8 Write short notes on any (5 x 2)
 - a) Simulated annealing
 - b) Evolutionary Programming
 - c) Genetic algorithm
 - d) Finite Element Based Optimization