Registration no:						İ	
Number of Pages: 02							M.TEC

2nd Semester Regular/ Back Examination – 2015-16 COMPUTATIONAL BIOLOGY

Total

Time: 3 Hours Max marks: 70 Q.CODE:W757

Answer Question No.1 which is compulsory and any five from the rest.

The figures in the right hand margin indicate marks.

Q1	a)	Answer the following questions: Explain TIGR.	(2 x 10)
	b) c)	What is PDB? Explain pharmacophore.	
		210 What are pattern databases? 210 210 210 210	210
	e)	How to chose the PAM matrix in accordance to sequence similarity?	
	f) g)	What is PlasmoDB? What do you mean by Entrez?	
	h)	Name two wet lab techniques for macromolecular structure prediction.	
	i)	Name sequence deposit tools in ENA database.	
	j)	What is the significance of R value in a PDB file?	
Q2		What is dynamic programming? Explain methods of dynamic programming used for pair wise sequence alignment.?	(10)
Q3	a)	What is substitution matrix? Describe different amino acid substitution matrices. How they differ from each other	(5)
	b)	What is substitution matrix? Describe different amino acid substitution matrices. How they differ from each other	(5)
0.4		210 210 210 210 210 210 210	210
Q4	a)	Explain Markov chain and Markov model. How they can be used in bioinformatics applications?	(5)
	b)	Explain Difference between primary and secondary databases with example.	(5)
Q5	a)	Explain the process of molecular dynamics simulation with suitable flow chart. How MD simulation is different from MC simulation?	(5)
	b)	Explain molecular descriptors and their types? Differentiate between 2D and 3D QSAR. 210	(5)
Q6	a)	Explain different approaches in drug design process. Explain the rules and parameters to describe	(5)
	b)	basic nature of a drug candidate. How FASTA is different from BLAST?	(5)
	b)	HOW LASTA IS UITICEIL HOILI BLAST!	(5)
Q7	a)	Explain in brief Force field	(5)
	b)	Describe Baum-Welch algorithm.	(5)

210	a) b)	Write short not NMR spectrose Uniprot Energy minimi Threading	copy	210	210	210	210	(5 x 2)
210	2		210	210	210	210	210	210
210	2*		210	210	210	210	210	210
210	2*		210	210	210	210	210	210
210	2*		210	210	210	210	210	210
210	2:		210	210	210	210	210	210
210	2		210	210		210	210	210

210 210 210 210 210 210