Registration no:									
------------------	--	--	--	--	--	--	--	--	--

Total Number of Pages: 02

M.TECH CEPE203

2nd Sem Regular / Back Examination – 2015-16 COMPOSITE STRUCTURES Q.CODE:W776

Time: 3 Hours
Max marks: 70

Answer Question No.1 which is compulsory and any five from the rest. The figures in the right hand margin indicate marks.

Q1 Answer the following questions:

 (2×10)

- a) Can concrete and mortar be termed as composite materials? Explain.
- b) What do you mean by particulate composite?
- c) In ceramic matrix composite category, state specific type of fibres and matrix used.
- d) Distinguish between thermo plastic and thermoset.
- e) Give an example of a regular angle-ply laminate.
- f) State, whether the total no of plys in an antisymmetric laminate is an odd no or even no.
- g) Draw the stress distribution diagram along the thickness of a symmetric angle ply laminate under flexure.
- h) What do you mean by stacking sequence? Give one example.
- i) State three applications of composite materials in different service sectors.
- j) In a composite material, define the following elastic modulus values. E_{11} , E_{22} , G_{12} , G_{23} .
- Q2 210 Define weight fraction and volume fraction for matrix and for 100 fibre. In (3+7) micromechanical analysis, derive the formula for the inplane shear modulus of a composite as a function of the corresponding shear modulus of fibre and the matrix.
- G3 For a FRP composite of unidirectional lamina with fibre orientation of 45 degree, calculate the compliance matrix, stiffness matrix and transformed reduced stiffness matrix if E $_{11}$ = 130 GPa, E $_{22}$ = 8 GPa, G $_{12}$ = 7.0 GPa, and v_{12} = 0.32. (10)
- Explain the difference between *principal material axis system* and *reference axis system* (2+2+6) with neat sketches for each one. Why is it required for transformation of stresses and strains from one axis system to another? Derive the *transformation matrix*, *T* wrt stress when

 transformed from principal material axis, 1-2 to the reference axis x-y.
- Q5 For a 0/90/0 symmetric laminate subjected to $N_x = 120$ MPa-mm thrust, calculate the resultant stresses along the reference axis for each lamina. $E_1 = 135$ GPa, $E_2 = 10$ GPa, $E_6 = 5$ GPa, thickness of each layer is 0.1 mm, $v_{12} = 0.3$.

Q6	210	Calculate the A and B matrix for a three layered $[0/45/0]$ laminate if $E_1 = 125$ GPa, $E_2 = 8$ GPa, $E_6 = 5$ GPa, $V_{12} = 0.35$ and total thickness of the laminate is 1.5 mm. Derive Navier's solution for finding deflection at centre of a square orthotropic laminate with all edges simply supported. Write short notes on any two: Assumptions in micromechanical analysis of composites Mathematical constant and engineering constant Isotropy and anisotropy						
Q7 Q8	a) b) c) d)							
	210	210	210	210	210	210	210	
	210	210	210	210	210	210	210	
	210	210	210	210	210	210	210	
	210	210	210	210	210	210	210	