Registration no:											l
------------------	--	--	--	--	--	--	--	--	--	--	---

Total Number of Pages: 02

M.TECH PEPC201/PPPC201

2ndSem M TechRegular/ BackExamination – 2015-16 POWER CONVERTER-II PED/POWER ELECTRONICS/ POWER ELECTRONICS AND POWER SYSTEM

Time: 3 Hours Max marks: 70 Q.CODE:W759

Answer Question No.1 which is compulsory and any five from the rest.

The figures in the right hand margin indicate marks.

Q1 Answer the following questions:

(2 x 10)

- a) What is the difference between unipolar and bipolar switching in PWM?
- b) A filter at the input stage is required in a buck converter where as in boost converter a input filter may not be required, why?
- c) How the current and source inverters are different?
- d) In SVM why two consecutive voltage vectors are selected for synthesizing the reference voltage vectors?
- e) Draw the circuit diagram of two-transistor flyback converter.
- f) What will happen in forward converter if we select tertiary turns equal to primary turns and duty ratio greater than 0.5?
- g) What is total harmonic distortion and how it is related to distortion factor?
- h) Draw the characteristics showing the effect of parasitic elements on the voltage conversion ratio in a buck-boost converter.
- i) What is the difference between PWM and SVM?
- j) Draw the basic circuit of L-type and M-type resonant converter switch.
- Q2 a) What is switch mode rectifier? Describe the operation of a single phase switch mode (5) rectifier. What will happen if the inductor is moved from load side to source side?
 - b) Explain the operation of series inverter with diagram and waveforms. What are (5) disadvantages and how they are overcome?
- Q3 a) Describe the operation of 5-level flying capacitors multilevel inverter with diagrams (6) and the switching states in a table.
 - b) What is reactive power compensation using multilevel inverter? Explain using phasor (4) diagrams.
- For three phase SVM Based inverter, derive the expressions of durations for which (7+3) the consecutive voltage vectors are to be applied in order to synthesize V_{ref} , in case the reference vector is lying in sector one. What do you mean by pulse of appropriate polarity?
- Q5 a) Derive the expression for output voltage of Boost converter by considering a non- ideal inductor that is the inductor has a finite resistance 'r'.

- b) In a step down converter, consider all components to be ideal. V_0 is held constant at 5V by controlling the switch duty ratio D. calculate the minimum inductance L required to keep the converter operation in continuous conduction mode under all conditions if V_d (input) is 10-40V, P_0 greater than equal to 5W and f_s =50kHz.
- Q6 a) Explain the working of an L-type zero current switch resonant converter with circuits (5) and waveforms.

The ZCS resonant converter shown above delivers a maximum power of P_L =400mW at V_0 = 4V. The supply voltage is V_s =12V. The maximum operating frequency is I_{max} =50kHz. Determine the values of L and C. Assume the mode I and mode III time intervals I_1 and I_2 are negligible and I_3 are negligible and I_4 where I_5 where I_7 where I_8 is I_8 and I_8 are negligible and I_8 is I_8 where I_8 is I_8 in I_8 is I_8 in I_8 i

Q7 Find the turns ratio of the transformer such that output voltage required is 100V at (10) D=0.5 for nominal input voltage of 12V in the below mentioned circuit.

- i) Compute the minimum and maximum value of D if input is varied from 10V to 14V, keeping V_0 constant.
- ii) Compute the value of L_s on the secondary side so that i_2 is just continuous at minimum value of D.
- iii) Find the value of 'C' for output voltage ripple of 1% at $D=D_{max}$. Take $V_D=0.8V$, voltage across the switch 'S'=0.8V, $f_s=2$ kHz.

Q8 Answer any two

b)

 (5×2)

- a) Forward converter
- b) Current regulated PWM voltage source inverter
- c) Sepic converter
- d) Three Phase Series Inverter.