Registration no:					

Total Number of Pages: 02

characteristics.

Describe different types of baffles and its purpose of use.

b)

M.TECH HTPE204

(4)

2nd Sem Regular / Back Examination – 2015-16 HEAT EXCHANGER ANALYSIS & DESIGN Q.CODE:W826

Time: 3 Hours
Max marks: 70

Answer Question No.1 which is compulsory and any five from the rest. The figures in the right hand margin indicate marks.

Q1		Answer the following questions:	(2 x 10)							
210	a)	Define fouling factor and the parameters affecting the resistance and heat transfer.								
	b)	What are the factors affecting cooling tower performance.								
	c)	What do you mean by hydraulic diameter and its effect on design of heat exchanger?								
	d)	Differentiate between direct contact type and storage type heat exchanger.								
	e)	When a heat exchanger is called as compact heat exchanger? Give an example.								
	f)	What are the causes of pressure drop in shell and tube heat exchangers?								
210	g)	In a cross flow both fluids unmixed has water at 6°C flowing at 1.25 kg/s. It is to cool 1.2 kg/s of air that is initially at temperature of 50°C. Calculate NTU & heat capacity ratio. Assume U=130W/m ² K and area is 23m ² .								
	h)	The extended surfaces are always used on gas side in liquid to gas heat exchange, justify your answer.								
	i)	What is correction factor, where it is used?								
	j)	Explain briefly Bell –Delaware method with neat sketch and its importance.								
210		210 210 210 210 210 210	210							
Q2	a)	What is the difference between rating & sizing of a heat exchanger?	(5)							
	b)	What is fouling factor and how it affects the design of a heat exchanger in heat transfer and pressure drop?	(5)							
Q3	a)	What are the various noise sources in a heat exchanger, how it can be minimized.	(5)							
210	b)	Briefly explain analysis of pressure drop is essential for heat exchanger thermal and mechanical analysis.	(5) 210							
Q4		A chemical having specific heat of 4.3 kJ/kg K at a rate of 30,000 kg/h enters a parallel Flow heat exchanger at 150° C.The flow rate of cooling water is 50,000 kg/h with an inlet temperature of 40° C.The heat transfer area is $20m^{2}$ & overall heat transfer coefficient is 1070 W/m^{2} K. Find effectiveness & outlet temperature of water & chemical. C_{p} of water 4.187KJ/kg K.	(10)							
Q5	a)	Classify heat exchanger according to flow and constriction type, Explain different	(6)							

Q6		is undergoing a ph		igers is independer e it.	at of flow directio	on if one side fluid	(10)		
Q7	a)	With a neat sketch	n, explain the wor	king of a cooling to	ower, and its type	es.	(4)		
	b)	A hot fluid at 200° C enters a heat exchanger at mass flow rate of 10 ⁴ kg/hr. The specific heat is 2000 J/kgK .It is to be cooled by other fluid entering at 25° C with a mass flow rate 2500 kg/hr and specific heat 400 J/kgK. If U=250 W/m²K based on outside area 20 m². Find the temperature of the hot fluids are in parallel flow.							
Q8	a) b) c)	rite short notes on Effectiveness & Et Losses in cooling t Regenerator and re	fficiency of Heat e cower.	exchanger	210	210	(5 x 2		
210		210	210	210	210	210	210		
210		210	210	210	210	210	210		
210		210	210	210	210	210	210		
210		210	210	210	210	210	210		
210		210	210	210	210	210	210		