Registration no:					
ixegisti ation no.					

Total Number of Pages: 02

M.TECH

CSPC102

1st Semester Regular / Back Examination – 2016-17 ADVANCED COMPUTER ARCHITECTURE

BRANCH: CSE

Time: 3 Hours Max marks: 70 Q.CODE:Y844

Answer Question No.1 which is compulsory and any five from the rest. The figures in the right hand margin indicate marks.

Q1 210 Answer the following questions:

(2 x 10)

- a) What is the difference between big-endian ordering and little-endian ordering?
- b) State Amdahl's law and hence find out the overall speed up in the below givenscenario: "An improvement can speed up 30% of the computation and the improvement makesthe portion affected twice as fast."
- c) State at least four differences between a RISC and a CISC based machine.
- d) Explain the term speculative execution of instructions.
- e) State the advantages of write through policy over write back policy.
- f) Explain the terms write allocate and no-write allocate in connection with write miss.
- g) State the differences between overlays and virtual memory.
- h) What is branch folding?
- i) Calculating Overall CPI.

Operation	Frequency		CPI(i)
ALU	40%		1
LOAD ^o	² 2 7%	210	2
STORE	13%		2
BRANCH	20%		5

- j) Explain the constraints imposed by control dependences.
- Q2 a) Three enhancements with the following speedups are proposed for a new architecture: Speedup1=25, Speedup2 = 35, Speedup3 = 15 Only one enhancement is usable at a time. If enhancement 1 and 2 are each usable for 25% of the time, what fraction of the time must enhancement 3 be used to achieve an overall speedup of 10?

 b) Consider the above facts given in question 2(a) and assume, for same benchmark, (5)
 - b) Consider the above facts given in question 2(a) and assume, for same benchmark, The possible fraction of use is 15% for each of enhancements 1 and 2 and 70% forenhancement 3. We want to maximize performance. If only one enhancement canbe implemented, which should it be? If two enhancements can be implemented, whichshould be chosen?

Q3	a)	We are given a task which is split up into four parts: p1=11%, p2=18%, p3=23%, p4=48%,which add up to 100%. Then we say p1 is not sped up, p2 is sped up 5 times, p3 is sped up20 times and p4 is sped up 1.6 times. Find out the running	(5)			
	210	time and the overall speed up.	210			
	b)	Assume:	(5)			
		 For 1000 instructions: 40 misses in L1, 20 misses in L2 L1 hit time: 1 cycle, L2 hit time: 10 cycles, 				
	210	• L2 miss penalty=100 ₁₀ 210 210 210	210			
		1.5 memory references per instruction				
		Assume ideal CPI=1.0				
		Find Local miss rate, AMAT, stall cycles per instruction, and those without L2 cache.				
Q4	a) 210	can eliminate these hazards. Give proper diagrammatic representation. ₂₁₀ ADD R1, R2, R3	210			
		SUB R4, R1, R5 AND R6, R1, R7 OR R8, R1, R9 XOR R10, R1, R11				
	b)		210			
Q5	3)	Describe VLIW architecture?	(5)			
QJ	a) b)	Differentiate between vector stride and vector length?	(5) (5)			
	D)	Differentiate between vector stride and vector length:	(0)			
Q6	a) 210	Explain delayed branch scheme to avoid instruction hazards. Give suitable example. 210 210 210 210 210 210	(5)			
	b)	Explain the different categories of data dependence. What are the possible data hazards that may arise due to these dependence?	(5)			
Q7	a)	· · · · · · · · · · · · · · · · · · ·	(5)			
		superscalararchitecture and super pipelined architecture.				
	,	What do you mean by coherence misses in symmetric shared-memory				
	210	multiprocessors? Explain the terms true sharing misses and false sharing misses in connection with the above issue.	210			
Q8		Write short notes on any two	(5 x 2)			
	a)	Flynn's classification	. ,			
	b)	Hyper threading				
	c)	• •				
	d)	MIPS 210 210 210 210 210	210			