| Reg | istra | tion no: | | | | | | | | | | | | | |--------------------------|--|---|---|--|---|---|---|---|--|-------------------------------------|--|---|---------------|-------------------------| | Tota | ıl Nu | mber of Pa | ges: 02 | 210 | | | 210 | | | 210 | | - | 210 | M.TECH
P1ECBC04 | | | | 1 ^s | t Seme
Advan | | Com | | nica | tion | | | | | | | | 210 | | 210 | | 210 | Tir
Max | ne: (
x Ma
Cod | 3∘Ho
ırks: | urs
100 |) | 210 | | 2 | 210 | 210 | | Aı | nsw | er Questic
The fi | on No.1
gures i | | ch is | cor | npu | Isor | _ | | _ | | | ne rest. | | Q1 210 | a)
b)
c)
d)
e)
f)
g)
h)
i)
j) | Answer the Write down Write down expression Establish th Under what doing so? Write down multichann Does an Al Give the im What is a minimportance What is a n Write down | two essent the explored where the most condition of the most electric community of the | ential eressione phases a kilon is a stiger inication number of the control th | differon for se is nd of a PLI neric on symples of a nce lator? | ences a CF conti mem L line expre /stem sent a in AW of a | PFSk
nuou
nory I
earize
essio
n. ²¹⁰
a fadi
VGN
line
w doe
perfo | K sigrus. ess red? V n for ing cl chan ar b | nodu
Vhat
the
nannel.
lock | Iation is the rece and code of wave | that
n sche
ne ad
ived :
explain | part of
eme.
vantage
signal
n.
/hat is | e of in a 210 | (2 x 10) ₂₁₀ | | Q2 | a)
b) | Write dowr its spectrur Evaluate th find out the | n. Sketch
le averag | the s
e pow | ame
/er co | with _l
ontain | prope
ned ir | er lab
n an l | els.
M-ary | | | e evalı | | (2+6+2) (8+2) | | Q3
210 | a) | An DSB-S0
Evaluate th
What infere | e signal o | degra | datior | n in d | B₁wh | | | | _ | |) 0 | (5+5) | | | b) | What is "Wexpression transmitted | for the | ML | fund | ction | of | an I | M-ary | / mo | odula | ted si | gnal | (10) | | Q4 ₂₁₀ | (a) | Derive the variable. | mean ar | nd the | vari | ance | of a | Ray | /leigh | n dis | tribute | ed rang | dom | (10) | | | (b) | Derive the | | istic f | unctio | on an | d the | CDF | of a | Ray | /leigh | distribu | uted | (10) | Q5 a) Suggest suitable a generator and a parity check matrix for the (10) | | b) | Show that for a b | _ | | | | (10) | |---------------|----|--|---|----------------------------------|---------------------------------------|---------------------------------|----------| | Q 6° | a) | Determine the | | • . | can be achie | eved using | (10) 210 | | | b) | ALOHA and slott
A normal GSM ti
training bits and
efficiency. | ime slot consi | sts of six tailing | | | (5) | | Q7 210 | a) | Derive the exprelectric fields of potential and the | a Hertzian dip | oole. Assume a | | | (10) | | | b) | Sketch the EM fi
harmonic current | ields at radial | distances away | | nating time | (10) | | Q8 | a) | The electric fie | | | | | (10 x 2) | | 210 | | homogeneous n | nedium is giv | ven by $\frac{50}{r}\cos^2 r$ | $(4\pi \times 10^6 t - 0.06)$ | $(63r)\mathbf{a}_{\theta}V/m$. | 210 | | | | Calculate the f
magnetic field in
medium is equal | requency, pratensity of the | opagation con | stant, velocity
lative permeal | y and the
oility of the | | | | b) | A certain coding is <i>p</i> . Evaluate | the probabilit | by that an $n-1$ | oit codeword | is in error. | | | 210 | b) | • | the probabilite p | by that an $n-1$ | oit codeword | is in error. | 210 | | 210 | b) | is p . Evaluate Assuming a sma | the probabilite p | by that an $n-1$, give an appro | oit codeword
ximate expres | is in error.
sion for the | 210 | | 210 | b) | is p . Evaluate Assuming a sma | the probabilite p | by that an $n-1$, give an appro | oit codeword
ximate expres | is in error.
sion for the | 210 | | | b) | is p . Evaluate Assuming a sma probability of error | the probabiliting the probabilition p or p or p | Ty that an $n-1$, give an appro | oit codeword
ximate express | is in error.
sion for the | | | 210 | b) | is p . Evaluate Assuming a sma probability of erro | the probabilit
ill value for <i>p</i> or. 210 | ty that an $n-1$, give an appro | pit codeword
ximate express
210 | is in error.
sion for the | 210 |