	Reg	istration No:									
Total Number of Pages: 02			210	210			210	M.TECH EIPC102			
					Back Examii						
	210	210	PRPU	210 BRA	YNAMICS A NCH(S): M Time: 3 Hou Max marks:	TECH irs	210	210	210		
		_		o.1 whicl	Q.CODE:Y9 h is compuls ight hand m	ory and	•	om the rest.			
Q1	210	Answer the following	owing au	estions:	210		210	210	(2 x 10)		
ν.	a)	What do you m			a Controller"	?			(2 11 10)		
	b)	•	•	_			tics of a no	ozzle/flapper system.			
	c)	Draw the signal pressure versus gap distance characteristics of a nozzle/flapper system. Define rate and reset controller.									
	d)	Explain Proportional Band.									
	e) 0	Why do we cho	ose negat	ive feedba	ack to design	control	system?	210	210		
	f)	A stepper motor has 10 degree per step and must rotate at 250 rpm. What input pulse rate, in pulses per second is required?									
	g)	Write the control valve chacteristics.									
	h)	State the difference	ence betwe	een contro	ol variables a	nd manip	oulated var	iables.			
	i)	Write the meas	uring devi	ce of Flov	w, Liquid Le	vel and C	Compositio	n.			
	j_{210}	State the three	major fund	ctions of a	dantive cont	rol system	m				
		210	major runc	210	idaptive com	ioi syste.	210	210	210		
Q2	a)	210	stability o	f a systen	n having foll	owing cl	naracteristi	cs equation using the	210 e (5)		
Q2	a) b)	Determine the	stability o $^\epsilon$	f a system $5 + S^5 + 5$	n having foll $S^4 + 3S^3 + 2S^4$	owing characters $S^2 + 4S + 4S$	naracteristi	cs equation using the	e (5) (5)		
Q2 Q3	•	Determine the Ruth-Hurwitz r Explain the cor A controller out linear dependen	stability onethod S ⁶ atrol systematrol systematrouts a 4-nce. Calcu	f a system $5 + S^5 + 5$ m parame 20mA signate	in having follows: $S^4 + 3S^3 + 2S$ ter with examinal to control	owing cl $S^2 + 4S +$ nples.	naracteristi ⊢8 = 0	cs equation using the 140-600 rpm with a	(5)		
	b)	Determine the Ruth-Hurwitz r Explain the correction A controller outlinear depender a) Current corrections	stability onethod S ^o ntrol system tputs a 4-nce. Calcuesponding	f a system $5 + S^5 + 5$ m parame 20 mA sig late to 310 rp	in having foll $S^4 + 3S^3 + 2s$ ter with examinal to control	owing cl $S^2 + 4S + 4$	naracteristi ⊢8 = 0		(5)		
Q3	b)	Determine the Ruth-Hurwitz r Explain the correction A controller outlinear dependent a) Current correction b) Value of (a)	stability onethod S ⁶ atrol system tputs a 4-ace. Calcuesponding expressed	f a system $5 + S^5 + 5$ m parame 20 mA sig late to 310 rp as % of c	in having follows: $S^4 + 3S^3 + 2s$ there with examinal to control in. controller out	owing cl $S^2 + 4S + 4$	naracteristic $+8=0$ speed from 210	140-600 rpm with a	(5) a (10)		
	b)	Determine the Ruth-Hurwitz r Explain the correction A controller outlinear dependent a) Current correction b) Value of (a)	stability of method S^{ϵ} at the system that a 4-ce. Calculate expressed we control	f a system $5 + S^5 + 5$ m parame 20 mA sig late to 310 rp as % of c	in having follows: $S^4 + 3S^3 + 2s$ there with examinal to control in. controller out	owing cl $S^2 + 4S + 4$	naracteristic $+8=0$ speed from 210		(5) a (10)		

Q5	a) b) 210	Explain, the PID controllers and write uses of P-controller, I- Controller, D,-Controller. (5) An integral controller is used for speed control with a set point of 12 rpm within range (5) 10 to 15 rpm. The controller output is 22% initially. The constant $K_I = -0.15\%$ controller output per second per percentage error. If the speed jumps to 13.5 rpm, calculate the controller output after 2s for constant e_p .										
Q6	a) b)	Explain the concept of feedback control and types of feedback controllers. Explain the concept of Direct action and Reverse action.										
Q7	210	What is Degree of Free Mention the advantages and			nd the Degree		(10)					
Q8	a) b) ₀ c)	Write short notes on any Feedback Control System Nozzle / Flapper system Feed forward control		210	210	210	5 x 2)					
	210	210	210	210	210	210	210					
	210	210	210	210	210	210	210					
	210	210	210	210	210	210	210					
	210	210	210	210	210	210	210					