| Registration no: | | | | | | | | | | | | | | 7 | | | |------------------|------|---|--|----------------|-----------------|--------------|-------------|---------------------------|---------------------|-----------------------------|-------|----------------|-------|--------------|---------------|-------------------------| | | | rteg | | | | | | | | | | | | | | | | 210 | Tota | 210
Al Nu | umber of Pages: | 02 | | 210 | | | 210 | | | 210 | | | 210 | M.TECH | | | | | | ATRI | X ME | THO | DS C | OF AI | NALY | 'SIS | OF S | TRU | ICTU | IRES | | _ | | 210 | | 210 | BRANCH(S) | : 511 | RUC | 210 | Tii
Ma | rou
me:
ax M
COE | 3°Hc
arks | urs
: 70 | | ا 5,5 ا
210 | RUC | TUKA | L ENG
210 | 210 | | | | Δ | nswer Question
The fi | | | | | | • | | • | | • | | | e rest. | | 210 | Q1 | 210
a) | Answer the follo | | | | | th on | 210
e enc | l fiye | d and | 210
1 oth | er en | d hina | 210
ed fin | (2 x 10) | | | | b) | the degree of sta
State the principle | atic a | ınd ki | nema | atic ir | | | | a and | <i>i</i> Oti i | or on | a mig | cu, iiii | u | | | | d) | Define <i>flexibility</i> Sate the types o | f forc | ces ca | arried | by t | he m | embe | | | | | | | | | 210 | | e) What do you mean by the two subscripts of the stiffness coefficient, K_{ij} ?₂₁₀ f) State the interrelationship between Stiffness and flexibility matrices of a structure. g) Which matrix method is suitable for analysis of statically indeterminate trusses? h) State <i>principle of superposition</i>. i) Justify, whether matrix method of structural analysis is suitable or not for manual analysis of structures. j) A Stiffness matrix is always symmetric. Is the statement correct? Explain. | anual | | | | | 210 | Q2 | a)°
b) | Differentiate better | weer | n equ | ilibriu | <i>m</i> an | nd <i>coi</i> | mpati | bility. | | 210 | | • | 210 | ² (5)
(5) | | | Q3 | a) | A continuous beat fixed and the mid kN/m acts on the | ldle s
whol | suppo
le bea | rtBa
am.T | nd th | ne righ
I value | nt har
e is c | ıd su _l
onsta | pport | C ar | e on | rollers. | A udl | of 10 | | 210 | | 210 | deformations, ana | alyze | the be | 210 | y stif | fness | metho
210 | od. | | 210 | | | 210 | 210 | | | Q4 | | Analyze the bea | m by | flexi | bility | | ix me | | EI = | Con | stant | | c | | (10) | | 210 | | 210 | 210 | | - | | | 5 m = | | | | | 3 m | 4 | 210 | 210 | Q5 a) For a cantilever of span, L and flexural rigidity, EI, applied with a point load, P, (5) calculate the value of *flexibility* and *stiffness*. 210 210 210 210 210 210 210 210 - b) State the conditions of equilibrium for a plane frame and and a space frame. (5) State the formulae for calculating the degree of indeterminacy of these frames. - Q6 a) Develop the stiffness matrix for the portal frame with respect to the coordinates mentioned in the figure. (10) 210 210 210 210 210 210 210 2 Q7 Choosing the bending moments at supports B and C as the redundants, derive the flexibility matrix of the continuous beam shown in figure below. El is constant for all spans. - Q8 Write short notes on any **TWO**. (5 x 2) - a) Reciprocal theorem - b) Equivalent joint loads - c) Kinematic Indeterminacy - d) Restrained structure and Released Structure 210 210 210 210 210 210 210 210 210