Total Number of Pages: 02 M.TECH PEPC103 ## 1st Semester Back Examination – 2016-17 ELECTRIC DRIVE - 1 **BRANCH(S): Power Electronics & Drives** Time: 3 Hours Max marks: 70 Q.CODE:Y894 Answer Question No.1 which is compulsory and any five from the rest. The figures in the right hand margin indicate marks. Q1 Answer the following questions: (2×10) **(5)** 210 **(5)** ₂₁₀ (5) - a) Give an example, where electric drive is operated at rated torque and zero speed. - b) What are the characteristics of active load? How does it differ from passive load? - A single phase uncontrolled rectifier is feeding a resistive load. Draw the input and output current waveform with a common reference axis. - d) A motor having moment of Inertia J_o is connected to the load having moment of inertia J_m through a set of gear having a teeth ratio N_1 : N_2 . Calculate the equivalent Moment of Inertia referred to the load side. - e) Derive the normalized torque equation for a chopper controlled dc motor drive. - f) Draw the circuit diagram for a voltage-controlled induction motor drive. - g) How regenerative braking can be applied to an Induction Motor drive? - h) Draw the output voltage, armature current and supply current waveform of the ²¹⁰ first quadrant operation of chopper circuit feeding the armature of a separately excited dc motor drive. - i) A 3-phase fully controlled rectifier is feeding a resistive load. Draw the output phase and line voltage with a common reference axis. - j) Draw the gating pulses for a three-phase thyrister converter fed to a resistive load. - Q2 a)210 Determine the stable operating speed of anthree phase Induction Motor drive for (i) constant torque load and (ii) Fan load torque. - b) Give an example of a mechanical load, where torque is negative but speed is positive. Justify. - Q3 a) Derive the expression for normalized torque of the three phase converter (5) controlled by the DC motor drive in steady state. - b) Consider a motor drive with R_{an} =0.1p.u, Φ_{fn} =1 p.u, V_{n} =1.1 p.u. and extreme load operating point $T_{e1(min)}$ = 0.1 p.u., $W_{mn(min)}$ =0.1 p.u., $T_{e2(max)}$ =1 p.u., and $W_{mn(max)}$ = W_{mn2} =1p.u. Find the normalized control voltage to meet these operating points. - Q4 Derive the output current equation for a chopper controlled dc motor drive in (10) just-continuous conduction mode. | (5)
(5) | or a four quadrant of 24V dc and at a equired to have a load. The motor Ω, La=0.003H, across the device | ource voltage of in duty cycle re constant 2 p.u. ncy, Ra=0.019 | opper with a so the variation is the variation is u. delivering a 8.5% efficier and the on-state | riven from a ch
kHz. Determine
of 0 and 1 p.u
ollows
2500rpm, 78
/sec.
one-quadrant, a | dc motor drive
A dc motor is dr
frequency of 1k
speed variation
details are as fol
1hp, 10V,
Kb=0.038V/rad/s | 210(b) 4 | | |-----------------------|---|--|--|--|--|--------------|--| | (5)
(5) | inner current loop
modulated –VSI
1 and modulating | lal pulse width | uced-emf loop.
ipolar sinusoid | or-inherent indu
orking of a uni | from the dc moto
Explain the wo | b) | | | (5)
(5) | eeding a dc motor | n effect. | ne commutation | state. Neglect the | drive in steady s | b) | | | (5 x 2) ¹⁰ | 210 | 210 | n motor drive. | very scheme.
ncy VSI Drives | Answer any two
Slip-power recov
Variable frequer
Efficient braking | a) :
b) ' | | | 210 | 210 | 210 | 210 | 210 | 210 | 210 | | | 210 | 210 | 210 | 210 | 210 | 210 | 210 | | | 210 | 210 | 210 | 210 | 210 | 210 | 210 | |