Total Number of Pages: 02

M.TECH PEPC103

1st Semester Back Examination – 2016-17 ELECTRIC DRIVE - 1

BRANCH(S): Power Electronics & Drives

Time: 3 Hours Max marks: 70 Q.CODE:Y894

Answer Question No.1 which is compulsory and any five from the rest.

The figures in the right hand margin indicate marks.

Q1 Answer the following questions:

 (2×10)

(5) 210

(5) ₂₁₀

(5)

- a) Give an example, where electric drive is operated at rated torque and zero speed.
- b) What are the characteristics of active load? How does it differ from passive load?
- A single phase uncontrolled rectifier is feeding a resistive load. Draw the input and output current waveform with a common reference axis.
- d) A motor having moment of Inertia J_o is connected to the load having moment of inertia J_m through a set of gear having a teeth ratio N_1 : N_2 . Calculate the equivalent Moment of Inertia referred to the load side.
- e) Derive the normalized torque equation for a chopper controlled dc motor drive.
- f) Draw the circuit diagram for a voltage-controlled induction motor drive.
- g) How regenerative braking can be applied to an Induction Motor drive?
- h) Draw the output voltage, armature current and supply current waveform of the ²¹⁰ first quadrant operation of chopper circuit feeding the armature of a separately excited dc motor drive.
- i) A 3-phase fully controlled rectifier is feeding a resistive load. Draw the output phase and line voltage with a common reference axis.
- j) Draw the gating pulses for a three-phase thyrister converter fed to a resistive load.
- Q2 a)210 Determine the stable operating speed of anthree phase Induction Motor drive for (i) constant torque load and (ii) Fan load torque.
 - b) Give an example of a mechanical load, where torque is negative but speed is positive. Justify.
- Q3 a) Derive the expression for normalized torque of the three phase converter (5) controlled by the DC motor drive in steady state.
 - b) Consider a motor drive with R_{an} =0.1p.u, Φ_{fn} =1 p.u, V_{n} =1.1 p.u. and extreme load operating point $T_{e1(min)}$ = 0.1 p.u., $W_{mn(min)}$ =0.1 p.u., $T_{e2(max)}$ =1 p.u., and $W_{mn(max)}$ = W_{mn2} =1p.u. Find the normalized control voltage to meet these operating points.
- Q4 Derive the output current equation for a chopper controlled dc motor drive in (10)

just-continuous conduction mode.

(5) (5)	or a four quadrant of 24V dc and at a equired to have a load. The motor Ω, La=0.003H, across the device	ource voltage of in duty cycle re constant 2 p.u. ncy, Ra=0.019	opper with a so the variation is the variation is u. delivering a 8.5% efficier and the on-state	riven from a ch kHz. Determine of 0 and 1 p.u ollows 2500rpm, 78 /sec. one-quadrant, a	dc motor drive A dc motor is dr frequency of 1k speed variation details are as fol 1hp, 10V, Kb=0.038V/rad/s	210(b) 4	
(5) (5)	inner current loop modulated –VSI 1 and modulating	lal pulse width	uced-emf loop. ipolar sinusoid	or-inherent indu orking of a uni	from the dc moto Explain the wo	b)	
(5) (5)	eeding a dc motor	n effect.	ne commutation	state. Neglect the	drive in steady s	b)	
(5 x 2) ¹⁰	210	210	n motor drive.	very scheme. ncy VSI Drives	Answer any two Slip-power recov Variable frequer Efficient braking	a) : b) '	
210	210	210	210	210	210	210	
210	210	210	210	210	210	210	
210	210	210	210	210	210	210	