
Registration no:														
Total Number of Pages: 02		210 210				210				210 <u>M.TECH</u> 210 ETPC101				
1 st Semester Back Examination 2016-17 MODERN DIGITAL COMMUNICATION TECHNIQUE BRANCH: CE,CS,ECE,ETE														
210		210	210	Time Max	: 3 <u> </u> Mark	lour (s: 7	'S '0	- 1 -	210			210		210
Q.CODE:Y934 Answer Question No.1 which is compulsory and any five from the rest. The figures in the right hand margin indicate marks.														
1. 210 210	a) b) c) d) e) f) g)	What is the advantage of How is the Hilbert transform What is a pre-envelope? State Markov Inequality What do you understand What is meant by optimal Give a mathematical corthogonal over the symbol Define chip rate in a CDI What do you inderstand What is the significance	f low pass orm of a sign write the and give its by a cycle al decision expression bol intervama sytem. by an idea of symbol	gnal ob expres s signif estation in com reflec I T.	otained sion for icance nary ra municating the nunicationisati	or the part as boundom attention relation chains on?	pre-en ounds o proces ecceive e sub-	velopo of tail ss? ers? -carrie	e of a proba	real si bility. OFD	M sys	210 (t).		210
210	b)	Let x(t) and y(t) denote equivalents with respect complex signals. Show t $\int_{-\infty}^{\infty} x(t)y(t)dt = \frac{1}{2}Re\left[\int_{-\infty}^{\infty} x(t)^{2} dt\right]$	t to some hat :	freque	_									210
3 .	a) b)	For a set of four finite exprocedure that will result in the sense state of the sense sta	n a set <i>N</i> ≤₄	4 ortho	norma 21	l signa	al wave	eform	S. 210			210	midt [5]	210
4.	a)	$V(t) = Xcos(2\pi f_c t) + Yc$ wide sense stationary if a Explain how QAM is diffusion in figure. The r	$os(2\pi f_c t)$, and only if	where E[X]=E PAM.	X and [Y]=0, Consi	Y are E[X²] der th	two ra =E[Y² e two	andon], and 8-poir	n varia d E[XY nt QA !	ables.]=0. M sign	Show al con	that Vo	[5] ions	

average transmitted power for each constellation, assuming that the signal points are equally

probable. Which constellation is more power-efficient?

b) Explain and give the general expression for M signal waveforms of *digital PAM* in baseband. Also give mathematical expressions for energy of the signal, average signal energy and average bit energy. Hence write the expression for bandpass digital PAM having carrier frequency f_c .

a) Draw and explain eye pattern showing the key indicators in the eye pattern diagram for a received signal. What is the effect of inter symbol interference to the eye pattern? Draw a typical eye patterns for QAM signals.

b) A channel is said to be distortionless if the response y(t) to an input x(t) is $Kx(t-t_0)$, where K and t_0 are constants. Show that if the frequency response of the channel is $A(f)e^{j\theta(f)}$, where A(f) and $\theta(f)$ are real, the necessary and sufficient conditions for distortionless transmission are:

$$A(f) = K \text{ and } \theta(f) = 2\pi f t_0 \pm n\pi, n = 0, 1, 2, ...$$
 [5]

a) With neat block diagram and supporting mathematical expressions explain the coherent detection in multichannel digital communication in AWGN channels.

[5]

b) Discuss the motivation and need to go for multiple carrier modulation techniques than single carrier modulation techniques. Hence discuss OFDM as a special case of a multiple carrier modulation technique. [5]

a) With neat block diagram, explain the frequency hopped spread spectrum technique.
 Emphasise block hopping in such a system.

b) A total of 30 equal-power users are to share a common communication channel by CDMA. Each user transmits information at a rate of 10 kbits/s via DS spread spectrum and binary PSK. Determine the minimum chip rate to obtain a bit error probability of 10⁻⁵. Additive noise at the receiver may be ignored in this computation.

[5x2]

8. Write short notes on any **two**:

I. Matched FilterII. Nyquist criterion for zero Inter symbol interference

III. Direct Sequence Spread Spectrum Signals

6.

7.

210 210 210 210 210 210 210 210

.....