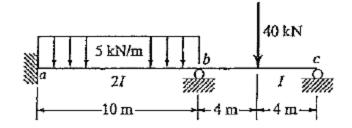

Registration	No:
--------------	-----

Total Number of Pages: 02

P2SUCC02 2nd Semester Regular Examination 2016-17 MATRIX METHODS OF ANALYSIS OF STRUCTURES BRANCH: STRUCTURAL & FOUNDATION ENGG, STRUCTURAL ENGG Time: 3 Hours

Max Marks: 100

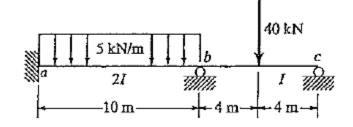
Q.CODE: Z493

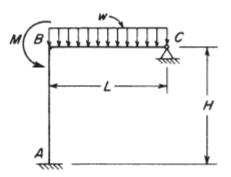

Answer Question No.1 which is compulsory and any FOUR from the rest. The figures in the right hand margin indicate marks.

Q1 Answer the following questions: **Short answer type**

(2 x 10)

<u>M.TECH</u>


- a) Compare *static and kinematic indeterminacies* of a fixed beam and a simply supported beam.
- b) For truss analysis, which matrix approach is preferable and why?
- c) What is the role of degrees of freedom in determining the size of stiffness matrix?
- d) Explain, principle of superposition?
- e) Can a fixed beam be analyzed by direct stiffness method by taking two nodes and one element? Comment.
- f) What do you mean by equivalent nodal loads?
- **g)** Show with the help of figures, the local and global axes of a rectangular portal with the angles of inclinations.
- **h)** What is the role of a *transformation matrix*?
- i) Which method of matrix analysis is suitable for computer programming and why?
- j) Stiffness and flexibility matrices are inverse of each other. Comment.
- **Q2** Solve the continuous beam shown in figure by stiffness matrix **(20)** approach. El constant for all members.


Q3 a) What is the magnitude and direction of force 'P' required to obtain (10) displacement components 2mm and -3mm along x and y directions at joint 'a'. Cross sectional areas(mm² x 10³) are indicated on each bar. E = 200,000 MPa.

- b) Neglecting axial stiffness, derive the stiffness matrix of a beam element (10) from classical approach.
- **Q4** Solve the continuous beam shown in figure by flexibility matrix (20) approach. El constant for all members.

Q5 Analyze the plane frame shown in figure, considering only the flexural (20) deformations. Assume $M = 2wL^2$, H = L and both members have flexural rigidity *EI*. Use stiffness matrix approach.

- Q6 a) State and prove *reciprocal theorem* in stiffness and flexibility matrix (10) approaches.
 - b) Assemble the stiffness matrix of the truss shown in Q. 3 (a) by using (10) computer oriented Direct Stiffness method treating AE constant for all members.
- Q7 A continuous beam ABC is fixed at end C and simply supported at ends
 A and B. Span AB and BC are 8m each and having constant EI. A load of 60 kN acts in the middle of AB and a load of 40 kN acts at 2m from end C on span BC. Solve the beam by flexibility method.