Registration No:										
------------------	--	--	--	--	--	--	--	--	--	--

Total Number of Pages: 02

M.TECH HTPE207

2nd Semester Back Examination 2016-17 GAS TURBINE AND JET PROPULSION

BRANCH: HEAT POWER ENGG, THERMAL ENGG, THERMAL POWER ENGG

Time: 3 Hour Max Marks: 70 Q. CODE: Z817

Answer Question No.1 which is compulsory and any five from the rest.

The figures in the right hand margin indicate marks.

Q1 Answer the following questions:

(2x10)

(4)

- a) Define dynamic temperature.
- **b)** Write two methods to improve the thermal efficiency of simple cycle gas turbine plant.
- c) Write steady flow energy equation for the turbine of a gas turbine plant.
- **d)** Define compressor work.
- e) What is combustion intensity of combustion chamber?
- f) Define degree of reaction of a compressor.
- g) Define effectiveness of a heat exchanger.
- **h)** Differentiate between radial flow and axial flow turbine.
- i) What is the stress on the blade of a rotor and how many types?
- j) What is the aspect ratio of a blade?
- Q2 (a) An open cycle gas turbine plant has a single stage compressor and a single stage expander incorporating a heat exchanger. The air suction temperature is 17^{0} C and the pressure 1 bar. For an overall pressure ratio of 4.5 and shaft output of 4000KW, the mass flow is 40kg/sec. If the thermal ratio of the heat exchanger is 0.6 and the isentropic efficiency of compressor is 0.85, calculate the isentropic efficiency of the gas turbine for a plant thermal efficiency of 0.30. Take for air, $\gamma = 1.4$, $C_{pa} = 1.005$ KJ/kg 0 K, for gas $\gamma = 1.365$, $C_{pg} = 1.07$ KJ/kg 0 k.
 - **(b)** Write the assumptions for open cycle gas turbine plant and derive the efficiency for it. (5)
- Q3 (a) Write different components of a centrifugal compressor and explain the working principle of each component. Calculate the work done by the compressor from velocity triangles.
 - (b) Draw the h-s diagram of a radial flow turbine.

Q4	(a)	Calculate the degree of reaction of a axial flow compressor.	(5)		
	(b)	Write the factors affecting the combustor design.	(5)		
Q5	(a) Write different components of a radial flow turbine and explain its working prin Calculate the specific work output from the velocity triangles.				
	(b)	Explain the methods of improving the part-load performance of gas turbine.	(4)		
Q6	(a)	Describe matching procedures of turbofan engine.	(5)		
	(b)	Describe the control systems of a gas turbine.	(5)		
Q7	(a)	Explain turbofan engine and turbojet engine.	(5)		
	(b)	Write a comparison between open cycle and closed cycle gas turbine.	(5)		
Q8		Write short note on: (any two)	(5x2)		
	(a)	Turbo shaft engine.			
	(b)	Compressibility effect on gas flows.			
	(c)	Transient behavior of gas turbine.			