Reg	istra	ation No:														
Total Number of Pages: 02 2nd Semester Regular Examination 2016-17 COMPOSITE STRUCTURES BRANCH: GEOTECHNICAL ENGG, SOIL MECHANICS, SOIL MECHANICS & FOUNDATION ENGG, STRUCTURAL & FOUNDATION ENGG, STRUCTURAL ENGG, TRANSPORTATION ENGG, Time: 3 Hours Max Marks: 100 Q.CODE: Z959																
Answer Question No.1 which is compulsory and any FOUR from the rest. The figures in the right hand margin indicate marks.																
Q1	e) f) g)	Answer the Distinguish to composite modulus of a State various composite laws what do you Give an exa Write all the	he anaterioetwees of oetwee variate la con a con a con a mea	nalys ials. een tl mate een la ious t mina nixtur nposi es of ates. an by of ar	he prerials aminatypes te sure, write lare fiber or trans	opert base a and of st bject rite th mina. s and svers yle-ply	n the ies, I don lami resse ed to he fo	nomo num nate. es wh exte rmula trices	ventingene ber o nich a rnal la to d s use bic m	onal eity au f inde are in oadir calcu d in t ateria	mate nd he epend duce ng? ilate the pi al?	eterog dent d at a the larepar	geneite elastic any po ongitu ation	ty. c oint udinal		2 x 10)
Q2	a)	For a special in the princip	•		•				•					nship)	(10)
	b)	For a FRP c degree, ca transformed $G_{12} = 7.2 \text{ GF}$	ompo lculat redu	osite te th iced	of un ne c stiffn	idired ompl ess r	ctiona iance	al lan e ma	nina v atrix	vith f , st	ibre d	orient ss n	ation natrix	and		(10)
Q3	a)	Develop the principal ma										ansfo	rmed	from	1	(10)
	b)	For a unidire										ix is	given	by		(10)

determine the four material properties of the lamina.

T180.0 2.90

2.90 10.5

0

7.0

Q4	a) b)	State the basic assumptions in the analysis of laminated composites. Derive the formula to calculate the stress resultants of a composite laminate as a function of layerwise stiffness matrix.	(8) (12)
Q5	a)	Prove that, all the terms of the bending-extension coupling stiffness matrix are zero for a symmetric laminate.	(10)
	b)	Compute the A matrix for a three layered laminate, [45/30/45] laminate if E_1 = 130 GPa, E_2 = 10 GPa, E_6 = 5 GPa, v_{12} = 0.3 and thickness of each layer is 0.5 mm.	(10)
Q6		Derive the Navier's solution for finding deflection at centre of a rectangular orthotropic laminate subjected to uniformly distributed loading with all edges simply supported.	(20)
Q7	a) b) c) d)	Write short notes on the followings. Applications of composites Characteristics of special orthotropic materials. Shear coupling coefficients Transformed reduced stiffness matrix	(5x4)