Registration no.											
------------------	--	--	--	--	--	--	--	--	--	--	--

Total Number of Pages: 02

M.TECH P2PRCC14

2nd Semester Regular Examination 2016-17 Advance Numerical Methods BRANCH: MECHANICS, SOIL MECHANICS & amp; FOUNDATION ENGG, STRUCTURAL & amp; FOUNDATION ENGG, STRUCTURAL ENGG, TRANSPORTATION ENGG, WATER

RESOURCE ENGG, WATER RESOURCE ENGG AND MANAGEMENT

Time: 3 Hours Max Marks: 100

Q.CODE: Z953

Answer Question No.1 which is compulsory and any FOUR from the rest. The figures in the right hand margin indicate marks.

- Answer the following questions: Short answer type
 a) Develop a recursive power function in C language for evaluating X^y where X is mantissa and y is exponent.
 - **b)** What is Roll's theorem?
 - c) What are the different conditions for satisfying vector norm?
 - **d)** Find rational approximation of the form $\frac{a_0 + a_1 x}{1 + b_1 X}$
 - e) How can you represent a range of computer number in IEEE standard?
 - f) State Gaussian Quadrature for numerical integration.
 - g) State forward substitution method for solving a system of linear equations.
 - h) What is the difference between *nodal points* and *grid points*?
 - i) Devise the procedure for improving accuracy of Trapezoidal rule using Romberg equation by eliminating successive terms in asymptotic expansion.
 - j) Differentiate between *interpolation* and *extrapolation*.
- **Q2 a)** Explain Newton- Raphson Method for solving system of nonlinear equation? (10) Find Error Criteria in NR method.
 - **b)** Using Gauss Elimination method, solve the following system of linear (10) equations.

$$x_{1+}x_{2+}x_3 = 6$$

$$3x_{1+}3x_{2+}4x_3 = 2$$

$$2x_{1+}x_{2+}3x_3 = 13$$

Q3 a) Solve the initial value problem.

u'=-2t u^2 ,u(0)=1. With h=0.2 on interval [0, 0.4]. Use fourth order classical RungeKuatta method.

Q1

(2 x 10)

(10)

- **b)** Evaluate double integral $\int_{1}^{5} \left(\int_{1}^{5} \left(\frac{dx}{(x^2+y^2)^{1/2}} \right) \right) dy.$ (10) Using trapezoidal rule with two subintervals and extrapolate.
- Q4 a) Evaluate $\int_0^1 \frac{dx}{1+x}$. (10) Using Simpsons 3/8th rule. Compare with exact solution.
 - **b)** Using Newton's backward difference interpolation, construct the interpolating polynomial that fits data.

interpolating polynomial that fits data.							
Х	0.1	0.3	0.5	0.7	0.9	1.1	
f(x)	-1.699.	-1.073	-0.375	0.443	1.429	2.631	

(10)

Estimate value of f(x) at x=0.6 and x=1.0

Q5	a)	Find all Eigen values and vectors of the given matrix. $A = \begin{pmatrix} 3 & 2 & 2 \\ 2 & 5 & 2 \\ 2 & 2 & 3 \end{pmatrix}$	(10)
	b)	What are Harmonic and Biharmonic equations? Using the transformation functions, show that the Bi-Harmonic equations are invariant.	(10)
Q6	a)	Using shooting method, solve the first boundary value problem. u''=u+1, $0 < x < 1u(0)=0$, $u(1) = e-1Use Euler Cauchy method with h=0.25 to solve resulting system of first orderinitial value problems.$	(10)
	b)	Find general solution of difference equations. $\Delta^2 u_n - 3 \Delta u_n + 2u_n = 0$ Is the solution bounded?	(10)
Q.7.	a)	Solve the boundary value problem. u''=u'+1 u (0)=1,u(1)=2(e-1). Use Fourth order Runge Kutta method with h=1/3.	(10)
	b).	The following data for function $f(x)=x^4$ is given. Find f'(0.8) and f''(0.8) using quadratic interpolation. Compare with exact solution. Obtain bound on truncation errors.	(10)

Х	0.4	0.6	0.8				
f(x)	0.0256	0.1296	0.4096				